
Вопрос задан 23.10.2018 в 05:03.
Предмет Алгебра.
Спрашивает Филиппов Алексей.
Пожалуйста, помогите решить уравнение :з



Ответы на вопрос

Отвечает Чайковский Антон.
Log4(x)*log4(x)+log4(sqrt(x))-1.5=0
ОДЗ: x>0
log4(x)*log4(x)+log4(x^{1/2})-1.5=0
log4(x)*log4(x)+0.5log4(x)-1.5=0
замена: p=log4(x)
p^2+0.5p-1.5=0
(p-1)(p+1.5)=0
p=1 p=-3/2
log4(x)=1 log4(x)=-3/2
x=4^{1}=4 x=4^{-3/2}=sqrt(4^{-3})=sqrt(1/64)=1/8
по ОДЗ подходят оба корня
Ответ: 1/8 и 4.
ОДЗ: x>0
log4(x)*log4(x)+log4(x^{1/2})-1.5=0
log4(x)*log4(x)+0.5log4(x)-1.5=0
замена: p=log4(x)
p^2+0.5p-1.5=0
(p-1)(p+1.5)=0
p=1 p=-3/2
log4(x)=1 log4(x)=-3/2
x=4^{1}=4 x=4^{-3/2}=sqrt(4^{-3})=sqrt(1/64)=1/8
по ОДЗ подходят оба корня
Ответ: 1/8 и 4.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili