Вопрос задан 20.10.2018 в 11:52. Предмет Алгебра. Спрашивает Солдатова Александра.

Два велосипедиста одновременно выехали из пунктов А и В навстречу друг другу и ехали с постоянными

скоростями. Встретились они через 2 часа. Первый велосипедист приехал в В на 3 часа позже, чем второй в А. Сколько времени каждый из них находился в пути?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Остроухов Максим.
Ответ смотри на листе смотри фото

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

Two cyclists start simultaneously from points A and B and travel towards each other at constant speeds. They meet after 2 hours. The first cyclist arrives at point B 3 hours later than the second cyclist arrives at point A. We need to determine how much time each cyclist spent on the road.

Solution

Let's assume that the first cyclist's speed is v1 and the second cyclist's speed is v2. We know that the distance between points A and B is the same for both cyclists.

We can use the formula distance = speed × time to calculate the distance traveled by each cyclist. Since they meet after 2 hours, the distance traveled by the first cyclist is v1 × 2 and the distance traveled by the second cyclist is v2 × 2.

We also know that the first cyclist arrives at point B 3 hours later than the second cyclist arrives at point A. Therefore, the time spent by the first cyclist is 2 + 3 hours and the time spent by the second cyclist is 2 hours.

To find the values of v1 and v2, we can set up a system of equations using the information above:

Equation 1: v1 × (2 + 3) = v2 × 2 (since the first cyclist arrives at point B 3 hours later than the second cyclist arrives at point A)

Equation 2: v1 × 2 = v2 × 2 (since they meet after 2 hours)

Simplifying Equation 1, we get: 5v1 = 2v2

Substituting this into Equation 2, we get: 5v1 × 2 = v2 × 2

Simplifying further, we get: 10v1 = 2v2

Dividing both sides of the equation by 2, we get: 5v1 = v2

Now we have a system of equations:

Equation 1: 5v1 = v2

Equation 2: 2v1 = v2

We can solve this system of equations to find the values of v1 and v2.

Calculation

Let's solve the system of equations:

From Equation 2, we can express v2 in terms of v1: v2 = 2v1

Substituting this into Equation 1, we get: 5v1 = 2v1

Dividing both sides of the equation by v1, we get: 5 = 2

This equation is not true, which means there is no solution that satisfies the given conditions. It seems there might be an error in the problem statement or the information provided.

Please double-check the problem statement or provide additional information if available.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос