Вопрос задан 10.10.2018 в 19:56. Предмет Алгебра. Спрашивает Смирнова Наталья.

Распишите: ctg(-0.7π) В книге вышло tg(π/5).

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кузнецова Александра.
Ctg(-0,7 \pi ) = - Ctg \frac{7 \pi }{10} =-Ctg( \frac{5 \pi }{10}+ \frac{2 \pi }{10})=-   Ctg( \frac{ \pi }{2}+ \frac{ \pi }{5})= tg \frac{ \pi }{5}
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для ответа на ваш вопрос, давайте рассмотрим каждую часть по отдельности.

Вычисление ctg(-0.7π)

Функция ctg(x) является обратной функцией к тангенсу (tg(x)). Чтобы вычислить ctg(-0.7π), мы сначала найдем значение тангенса для -0.7π, а затем возьмем его обратное значение.

Значение тангенса для -0.7π можно найти, используя тригонометрические соотношения. Так как тангенс является отношением синуса к косинусу, мы можем использовать соотношение tg(x) = sin(x) / cos(x).

Таким образом, tg(-0.7π) = sin(-0.7π) / cos(-0.7π).

Значение синуса и косинуса для -0.7π можно найти, зная, что π равно приблизительно 3.14159.

sin(-0.7π) ≈ sin(-2.19911) ≈ -0.95106 cos(-0.7π) ≈ cos(-2.19911) ≈ 0.30902

Теперь мы можем вычислить tg(-0.7π):

tg(-0.7π) ≈ -0.95106 / 0.30902 ≈ -3.08007

Теперь, чтобы найти ctg(-0.7π), мы возьмем обратное значение от tg(-0.7π):

ctg(-0.7π) ≈ 1 / tg(-0.7π) ≈ 1 / -3.08007 ≈ -0.32492

Вычисление tg(π/5)

Теперь рассмотрим вычисление tg(π/5). Здесь π/5 представляет собой угол, равный одной пятой от полного оборота вокруг окружности.

Значение тангенса для π/5 можно найти, используя тригонометрические соотношения. Так как тангенс является отношением синуса к косинусу, мы можем использовать соотношение tg(x) = sin(x) / cos(x).

Значение синуса и косинуса для π/5 можно найти, зная, что π равно приблизительно 3.14159.

sin(π/5) ≈ sin(0.62832) ≈ 0.58779 cos(π/5) ≈ cos(0.62832) ≈ 0.80902

Теперь мы можем вычислить tg(π/5):

tg(π/5) ≈ 0.58779 / 0.80902 ≈ 0.72654

Результаты вычислений

Таким образом, результаты вычислений следующие:

ctg(-0.7π) ≈ -0.32492 tg(π/5) ≈ 0.72654

Важно отметить, что результаты вычислений представлены с округлением и могут быть приближенными.

Если у вас возникнут еще вопросы, пожалуйста, не стесняйтесь задавать их!

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос