расстояние в 60 км петя проехал на велосипеде на 1 час быстрее васи .найти их скорости,если
скорость пети на 3 км/ч больше.Ответы на вопрос
        60\х+ 1=60\(х-3), \*х (х-3),
60х+х (х-3)=60х,
х^2-3х-180=0,
х1=15, х2=-12(не уд. усл) 15 км\ч-скор. Пети, 12 км\ч-скорость Васи.
            Problem Analysis
We are given that Petya traveled a distance of 60 km on a bicycle in 1 hour less time than Vasya. We are also told that Petya's speed is 3 km/h faster than Vasya's speed. We need to find the speeds of both Petya and Vasya.Solution
Let's assume that Vasya's speed is x km/h. Since Petya's speed is 3 km/h faster, Petya's speed will be x + 3 km/h.We know that distance = speed × time.
For Vasya, the distance he traveled is 60 km and the time taken is t hours (which is the time taken by Petya minus 1 hour). So, we have the equation:
60 = x × t For Petya, the distance he traveled is also 60 km and the time taken is t - 1 hours. So, we have the equation:
60 = (x + 3) × (t - 1) We can solve these two equations to find the values of x and t.
Solving the Equations
Let's solve the equations and to find the values of x and t.From equation we can express t in terms of x:
t = 60 / x Substituting equation into equation we get:
60 = (x + 3) × (60 / x - 1)
Simplifying this equation, we have:
60 = (x + 3) × (60 - x) / x
Cross-multiplying, we get:
60x = (x + 3) × (60 - x)
Expanding the equation, we have:
60x = 60x - x^2 + 180 - 3x
Simplifying further, we get:
0 = -x^2 + 180 - 3x
Rearranging the terms, we have:
x^2 - 3x - 180 = 0
Now, we can solve this quadratic equation to find the value of x.
Solving the Quadratic Equation
We can solve the quadratic equation x^2 - 3x - 180 = 0 using the quadratic formula:x = (-b ± sqrt(b^2 - 4ac)) / (2a)
For our equation, a = 1, b = -3, and c = -180.
Substituting these values into the quadratic formula, we get:
x = (-(-3) ± sqrt((-3)^2 - 4(1)(-180))) / (2(1))
Simplifying further, we have:
x = (3 ± sqrt(9 + 720)) / 2
x = (3 ± sqrt(729)) / 2
x = (3 ± 27) / 2
So, we have two possible values for x:
x = (3 + 27) / 2 = 30 x = (3 - 27) / 2 = -12 Since speed cannot be negative, we can discard the value of x = -12.
Therefore, the speed of Vasya is x = 30 km/h.
Now, we can substitute this value of x into equation to find the value of t:
t = 60 / x = 60 / 30 = 2 So, the time taken by Vasya is t = 2 hours.
Finally, we can calculate Petya's speed by adding 3 km/h to Vasya's speed:
Petya's speed = Vasya's speed + 3 = 30 + 3 = 33 km/h.
Answer
Therefore, the speed of Vasya is 30 km/h and the speed of Petya is 33 km/h.Let me know if you need any further assistance!
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			