
1)(5x+3)^2=5x+3; 2)(3x-8)^2=3x^2-8x; 3)(3x+10)^2=3x+10; 4)(4x+5)^2=5x^2+4x; помагите пожалуйста


Ответы на вопрос

25х^2+30х+9=5х+3
25х^2+25х+6=0
Найдем дискриминант квадратного уравнения:
D = b^2 - 4ac = 25^2-4·25·6 = 625 - 600 = 25
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (-25 - √25)/2×25= (-25 - 5) /50=-30 /50= -0.6
x2 =(-25 + √25)/50 =(-25 + 5)/50=-20 /50=
-0.4
2))9х^2-48х+64=3х^2-8х
6х^2-40х+64=0
Найдем дискриминант квадратного уравнения:
D=b^2- 4ac=(-40)^2- 4·6·64=1600-1536 = 64
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1=(40 - √64)/6×2 =(40 - 8)/12=32/12=8/3
x2=(40 + √64)/12 =(40 + 8)/12 = 48/12= 4



Solution to the Equations
Let's solve the given equations one by one:
1) (5x+3)^2 = 5x+3
To solve this equation, we can expand the left side and simplify:
(5x+3)^2 = (5x+3)(5x+3) = 25x^2 + 30x + 9
Now, we have the equation: 25x^2 + 30x + 9 = 5x + 3
Simplifying further, we get: 25x^2 + 25x + 6 = 0
To solve this quadratic equation, we can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
In this case, a = 25, b = 25, and c = 6. Substituting these values into the formula, we get:
x = (-25 ± √(25^2 - 4 * 25 * 6)) / (2 * 25)
Simplifying further, we get:
x = (-25 ± √(625 - 600)) / 50
x = (-25 ± √25) / 50
x = (-25 ± 5) / 50
This gives us two solutions:
x = (-25 + 5) / 50 = -20 / 50 = -0.4
x = (-25 - 5) / 50 = -30 / 50 = -0.6
Therefore, the solutions to the equation (5x+3)^2 = 5x+3 are x = -0.4 and x = -0.6.
2) (3x-8)^2 = 3x^2 - 8x
To solve this equation, we can expand the left side and simplify:
(3x-8)^2 = (3x-8)(3x-8) = 9x^2 - 24x + 64
Now, we have the equation: 9x^2 - 24x + 64 = 3x^2 - 8x
Simplifying further, we get: 6x^2 - 16x + 64 = 0
To solve this quadratic equation, we can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
In this case, a = 6, b = -16, and c = 64. Substituting these values into the formula, we get:
x = (-(-16) ± √((-16)^2 - 4 * 6 * 64)) / (2 * 6)
Simplifying further, we get:
x = (16 ± √(256 - 1536)) / 12
x = (16 ± √(-1280)) / 12
Since the discriminant is negative, the equation has no real solutions.
Therefore, the equation (3x-8)^2 = 3x^2 - 8x has no real solutions.
3) (3x+10)^2 = 3x + 10
To solve this equation, we can expand the left side and simplify:
(3x+10)^2 = (3x+10)(3x+10) = 9x^2 + 60x + 100
Now, we have the equation: 9x^2 + 60x + 100 = 3x + 10
Simplifying further, we get: 9x^2 + 57x + 90 = 0
To solve this quadratic equation, we can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
In this case, a = 9, b = 57, and c = 90. Substituting these values into the formula, we get:
x = (-57 ± √(57^2 - 4 * 9 * 90)) / (2 * 9)
Simplifying further, we get:
x = (-57 ± √(3249 - 3240)) / 18
x = (-57 ± √9) / 18
x = (-57 ± 3) / 18
This gives us two solutions:
x = (-57 + 3) / 18 = -54 / 18 = -3
x = (-57 - 3) / 18 = -60 / 18 = -3.33
Therefore, the solutions to the equation (3x+10)^2 = 3x + 10 are x = -3 and x = -3.33.
4) (4x+5)^2 = 5x^2 + 4x
To solve this equation, we can expand the left side and simplify:
(4x+5)^2 = (4x+5)(4x+5) = 16x^2 + 40x + 25
Now, we have the equation: 16x^2 + 40x + 25 = 5x^2 + 4x
Simplifying further, we get: 11x^2 + 36x + 25 = 0
To solve this quadratic equation, we can use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
In this case, a = 11, b = 36, and c = 25. Substituting these values into the formula, we get:
x = (-36 ± √(36^2 - 4 * 11 * 25)) / (2 * 11)
Simplifying further, we get:
x = (-36 ± √(1296 - 1100)) / 22
x = (-36 ± √196) / 22
x = (-36 ± 14) / 22
This gives us two solutions:
x = (-36 + 14) / 22 = -22 / 22 = -1
x = (-36 - 14) / 22 = -50 / 22 = -2.27
Therefore, the solutions to the equation (4x+5)^2 = 5x^2 + 4x are x = -1 and x = -2.27.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili