Вопрос задан 24.08.2018 в 07:44. Предмет Алгебра. Спрашивает Джула Вова.

Представьте в виде степеней с одинаковыми основаниями и вычислите значение выражения 1) 3⁻¹⁶ :

9⁻⁹; 2) 81⁶ * 3⁻²³; 3) 32⁻⁵* 16⁷
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рудик Саша.
1) = 3^(-16) : 3^(-18)=3^(-16+18) = 3^2 = 9
2) = 3^24 * 3^(-23) = 3^(24-23) = 3
3) =2^(-25) * 2^28 = 2^(-25+28) = 2^3 = 8
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного выражения, представленного в виде степеней с одинаковыми основаниями, нужно использовать правила работы со степенями.

Решение:

1) Выражение: 3⁻¹⁶ : 9⁻⁹

Для деления степеней с одинаковым основанием нужно вычитать показатели степени. В данном случае, основание у нас одинаковое - число 3. Поэтому, мы можем применить правило и получить:

3⁻¹⁶ : 9⁻⁹ = 3⁻⁷

2) Выражение: 81⁶ * 3⁻²³

Для умножения степеней с одинаковым основанием нужно сложить показатели степени. У нас основание - число 3, одинаковое. Поэтому, мы можем применить правило и получить:

81⁶ * 3⁻²³ = (3⁴)⁶ * 3⁻²³ = 3⁻²⁷ * 3⁻²³ = 3⁻⁵⁰

3) Выражение: 32⁻⁵ * 16⁷

Аналогично предыдущему примеру, для умножения степеней с одинаковым основанием нужно сложить показатели степени. В данном случае, основание у нас одинаковое - число 2. Поэтому, мы можем применить правило и получить:

32⁻⁵ * 16⁷ = (2⁵)⁻⁵ * (2⁴)⁷ = 2⁻²⁵ * 2²⁸ = 2³

Итоговые значения:

1) 3⁻¹⁶ : 9⁻⁹ = 3⁻⁷ 2) 81⁶ * 3⁻²³ = 3⁻⁵⁰ 3) 32⁻⁵ * 16⁷ = 2³

Таким образом, значения выражений равны:

1) 3⁻¹⁶ : 9⁻⁹ = 3⁻⁷ 2) 81⁶ * 3⁻²³ = 3⁻⁵⁰ 3) 32⁻⁵ * 16⁷ = 2³

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос