
Бригада красит забор длиной 240 метров,ежедневно увеличивая норму покраски на одно и то же число
метров.Известно,что за первый и последний день в сумме бригада покрасила 60 метров забора.Определите,сколько дней бригада красила весь забор

Ответы на вопрос

Sn – общая площадь
n – количество дней
a1 – первый день
an – последний день
Sn= ((a1+an)/2)*n
n= Sn/((a1+an)/2)
a1+an=60
n= 240/60/2= 8 дней
Ответ: 8 дней



Problem Analysis
We are given that a team is painting a fence that is 240 meters long. The team increases the daily painting norm by the same number of meters each day. It is known that on the first and last day, the team painted a total of 60 meters of the fence. We need to determine how many days it took for the team to paint the entire fence.Solution
Let's assume that on each day, the team increases the daily painting norm by x meters. On the first day, they painted 60 meters, so the second day they painted 60 + x meters. On the last day, they also painted 60 meters, so the second-to-last day they painted 60 + x meters.To find the number of days it took for the team to paint the entire fence, we can set up the following equation:
60 + (60 + x) + (60 + 2x) + ... + (60 + (n-1)x) = 240
Simplifying the equation, we get:
60n + x(1 + 2 + ... + (n-1)) = 240
The sum of the first n natural numbers can be calculated using the formula (n(n+1))/2. Substituting this into the equation, we get:
60n + x(n(n-1))/2 = 240
Simplifying further, we have:
60n + xn^2 - xn = 480
Rearranging the equation, we get a quadratic equation:
xn^2 + (60 - x)n - 480 = 0
We can solve this quadratic equation to find the value of n, which represents the number of days it took for the team to paint the entire fence.
Let's solve the quadratic equation using the given information.
Calculation
Using the quadratic formula, we have:n = (-b ± √(b^2 - 4ac)) / (2a)
where: - a = x - b = 60 - x - c = -480
Substituting the values into the formula, we get:
n = (-(60 - x) ± √((60 - x)^2 - 4x(-480))) / (2x)
Simplifying further, we have:
n = (-(60 - x) ± √(3600 - 120x + x^2 + 1920x)) / (2x)
n = (-(60 - x) ± √(x^2 + 1800x + 3600)) / (2x)
Now, we can solve for n using the given information.
Answer
To determine the number of days it took for the team to paint the entire fence, we need to solve the quadratic equation:n = (-(60 - x) ± √(x^2 + 1800x + 3600)) / (2x)
Unfortunately, we don't have the value of x (the daily increase in the painting norm) to solve the equation. Without that information, we cannot determine the exact number of days it took for the team to paint the entire fence.
Please provide the value of x (the daily increase in the painting norm) so that we can calculate the number of days.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili