Вопрос задан 04.08.2018 в 22:27. Предмет Алгебра. Спрашивает Пискунов Вадим.

ДАМ 60 БАЛЛОВ!СРОЧНО!!!!(ИСПОЛЬЗУЯ ПРИЗНАКИ ПРОПОРЦИОНАЛЬНОСТИ ТРЕУГОЛЬНИКА) ОТРЕЗОК АК

БИССЕКТРИСА ТРЕУГОЛЬНИКА АВС.НАЙДИТЕ ОТРЕЗКИ ВК И КС,ЕСЛИ АВ=8 СМ АС =12 СМ ВС=10 СМ
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Яковлева Юлия.
Ответ: 6см, 4см.
Решение прилагаю.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Finding the Lengths of VK and KS using the Angle Bisector Theorem

To find the lengths of VK and KS in triangle ABC, where AB = 8 cm, AC = 12 cm, and BC = 10 cm, we can use the Angle Bisector Theorem. The Angle Bisector Theorem states that in a triangle, the angle bisector of a vertex divides the opposite side into segments that are proportional to the lengths of the other two sides.

In triangle ABC, let VK be the angle bisector of angle BAC, and let KS be the angle bisector of angle BCA. We need to find the lengths of VK and KS.

According to the Angle Bisector Theorem, the ratio of the lengths of the segments formed by the angle bisector is equal to the ratio of the lengths of the sides opposite those segments. Mathematically, we can express this as:

VK / VKS = AB / BS

KS / VKS = AC / CK

Now, let's substitute the given values into these equations:

VK / VKS = AB / BS KS / VKS = AC / CK

VK / VKS = 8 / BS KS / VKS = 12 / CK

To find the lengths of VK and KS, we need to find the lengths of BS and CK. We can use the fact that the sum of the lengths of the segments formed by the angle bisector is equal to the length of the side opposite the angle bisector. In other words:

BS + CK = BC

Substituting the given values:

BS + CK = 10

Now, we have a system of equations:

VK / VKS = 8 / BS KS / VKS = 12 / CK BS + CK = 10

To solve this system of equations, we can use substitution or elimination. Let's use substitution:

From the equation BS + CK = 10, we can express CK in terms of BS:

CK = 10 - BS

Substituting this into the equation KS / VKS = 12 / CK:

KS / VKS = 12 / (10 - BS)

Now, we can substitute this expression for CK into the equation VK / VKS = 8 / BS:

VK / VKS = 8 / BS

Simplifying these equations, we get:

KS = (12 * VKS) / (10 - BS) VK = (8 * VKS) / BS

Now, we can substitute these expressions for VK and KS into the equation BS + CK = 10:

(8 * VKS) / BS + (12 * VKS) / (10 - BS) = 10

Simplifying this equation, we get:

(8 * VKS * (10 - BS) + 12 * VKS * BS) / (BS * (10 - BS)) = 10

To solve this equation, we need to find the values of VKS and BS that satisfy it. Unfortunately, the given information does not provide enough information to determine the exact values of VKS and BS. Therefore, we cannot find the lengths of VK and KS using the given information.

Please provide additional information or clarify the question if possible.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос