
Сколькими нулями заканчивается произведение всех натуральных чисел от 10 до 50? ОБЪЯСНИТЕ!


Ответы на вопрос

21*22*...*30=109027350432000
31*32*...*40=3075990524006400
41*42*...*50=123840674496000
Итого 11 нулей



Calculating the Number of Zeroes in the Product of Natural Numbers from 10 to 50
To calculate the number of zeroes at the end of the product of all natural numbers from 10 to 50, we need to consider the prime factorization of each number and count the number of 2s and 5s, as the number of zeroes in the product will be determined by the minimum of the count of 2s and 5s in the prime factorization of each number.
The prime factorization of a number is the expression of that number as the product of prime numbers.
Prime Factorization of Numbers from 10 to 50
The prime factorization of each number from 10 to 50 is as follows: - 10 = 2 * 5 - 11 = 11 - 12 = 2^2 * 3 - 13 = 13 - 14 = 2 * 7 - 15 = 3 * 5 - 16 = 2^4 - 17 = 17 - 18 = 2 * 3^2 - 19 = 19 - 20 = 2^2 * 5 - 21 = 3 * 7 - 22 = 2 * 11 - 23 = 23 - 24 = 2^3 * 3 - 25 = 5^2 - 26 = 2 * 13 - 27 = 3^3 - 28 = 2^2 * 7 - 29 = 29 - 30 = 2 * 3 * 5 - 31 = 31 - 32 = 2^5 - 33 = 3 * 11 - 34 = 2 * 17 - 35 = 5 * 7 - 36 = 2^2 * 3^2 - 37 = 37 - 38 = 2 * 19 - 39 = 3 * 13 - 40 = 2^3 * 5 - 41 = 41 - 42 = 2 * 3 * 7 - 43 = 43 - 44 = 2^2 * 11 - 45 = 3^2 * 5 - 46 = 2 * 23 - 47 = 47 - 48 = 2^4 * 3 - 49 = 7^2 - 50 = 2 * 5^2Counting the Number of Zeroes
The number of zeroes at the end of the product will be determined by the minimum of the count of 2s and 5s in the prime factorization of each number. Since the count of 5s will always be less than the count of 2s, we only need to count the number of 5s in the prime factorization of each number.- For numbers less than 25, we count the number of 5s in their prime factorization. - For numbers between 25 and 50, we count the number of 5s and the additional 5s from the squares of 5.
Calculating the Number of Zeroes
The number of zeroes at the end of the product of all natural numbers from 10 to 50 can be calculated as follows:10, 15, 20, 25, 30, 35, 40, 45, 50 each contribute one zero, and 25 contributes an additional zero due to the square of 5.
Therefore, the total number of zeroes at the end of the product of all natural numbers from 10 to 50 is 12.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili