Вопрос задан 02.08.2018 в 01:13. Предмет Алгебра. Спрашивает Дашко Даниил.

3a^2+6ab+3b^2,если a+b=9

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Макаров Пётр.
3(a+b)^2=3*9^2=3*81=243
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного уравнения, нам необходимо разложить выражение 3a^2 + 6ab + 3b^2 на множители, используя информацию о том, что a + b = 9.

Разложение на множители выражения 3a^2 + 6ab + 3b^2

Мы можем применить формулу квадрата суммы для разложения на множители выражения 3a^2 + 6ab + 3b^2. Формула квадрата суммы гласит:

(a + b)^2 = a^2 + 2ab + b^2

Мы можем увидеть, что наше исходное выражение 3a^2 + 6ab + 3b^2 очень похоже на формулу квадрата суммы, за исключением того, что коэффициенты перед каждым слагаемым отличаются. Чтобы сделать их совпадающими, мы можем разделить исходное выражение на 3:

3a^2 + 6ab + 3b^2 = 3(a^2 + 2ab + b^2)

Теперь наше выражение 3a^2 + 6ab + 3b^2 стало похожим на формулу квадрата суммы, и мы можем записать его следующим образом:

3(a^2 + 2ab + b^2) = 3(a + b)^2

Подстановка значения a + b

Мы знаем, что a + b = 9, поэтому мы можем подставить это значение в наше выражение:

3(a + b)^2 = 3(9)^2

Вычислим это:

3(9)^2 = 3 * 81 = 243

Ответ

Таким образом, исходное выражение 3a^2 + 6ab + 3b^2, при условии a + b = 9, равно 243.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос