Вопрос задан 01.08.2018 в 12:29. Предмет Алгебра. Спрашивает Ермольников Виктор.

Решите уравнение x^2+4x+5=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Чабан Дмитрий.
X^2 + 4x + 5 = 0 
D = 16 - 20 = - 4
x ∉ R, нет решений 
0 0
Отвечает Сапарбай Нұрмахан.
x^2+4x+5=0

D=4^2-4*1*5=16-20=-4

x
∉R
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного квадратного уравнения x^2 + 4x + 5 = 0, мы можем использовать квадратное уравнение вида ax^2 + bx + c = 0, где a = 1, b = 4 и c = 5.

Существует несколько способов решения квадратных уравнений, в том числе методы факторизации, завершения квадрата и использования формулы корней. В данном случае мы воспользуемся последним методом, который называется формулой корней.

Формула корней гласит:

x = (-b ± √(b^2 - 4ac)) / (2a)

Подставляя значения a = 1, b = 4 и c = 5 в формулу, получим:

x = (-4 ± √(4^2 - 4*1*5)) / (2*1)

x = (-4 ± √(16 - 20)) / 2

x = (-4 ± √(-4)) / 2

Так как подкоренное выражение (-4) является отрицательным числом, то уравнение не имеет действительных корней в области вещественных чисел. Вместо этого, корни будут комплексными числами.

Выражение √(-4) можно представить в виде √4 * √(-1), что равно 2i, где i - мнимая единица (√(-1)).

Таким образом, решение уравнения x^2 + 4x + 5 = 0 будет:

x = (-4 ± 2i) / 2

x = -2 ± i

То есть, уравнение имеет два комплексных корня: x = -2 + i и x = -2 - i.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос