Вопрос задан 31.07.2018 в 07:55. Предмет Алгебра. Спрашивает Сейтяева Динара.

Разложить на множители ab^2-ac^2=

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гонсалес Лурдес.
A*(b^2-c^2)
a*(b-c)*(b+c)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Разложение на множители

Для разложения выражения \(ab^2 - ac^2\) на множители, мы можем воспользоваться разностью квадратов, которая имеет вид \(a^2 - b^2 = (a + b)(a - b)\). В данном случае, мы можем вынести общий множитель \(a\) и затем воспользоваться разностью квадратов для переменных \(b\) и \(c\).

Итак, разложим \(ab^2 - ac^2\):

1. Выносим общий множитель \(a\): \(ab^2 - ac^2 = a(b^2 - c^2)\)

2. Воспользуемся формулой разности квадратов: \(b^2 - c^2 = (b + c)(b - c)\)

Таким образом, исходное выражение \(ab^2 - ac^2\) разлагается на множители следующим образом: \[ab^2 - ac^2 = a(b + c)(b - c)\]

Таким образом, мы получаем разложение данного выражения на множители: \(ab^2 - ac^2 = a(b + c)(b - c)\).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос