
Дана арифметическая прогрессия (Аn) у которой а 4 =4,d=-3. Найти: а8, а9, а23, а11, а15, а27
помогите пожалуйста.

Ответы на вопрос




Arithmetic Progression (Аn)
An arithmetic progression is a sequence of numbers in which the difference between any two consecutive terms is constant. In this case, we are given an arithmetic progression with a fourth term (a4) equal to 4 and a common difference (d) of -3.
To find the eighth term (a8), we can use the formula for the nth term of an arithmetic progression:
an = a1 + (n - 1) * d
where: - an is the nth term - a1 is the first term - n is the position of the term in the sequence - d is the common difference
Calculating a8
Using the given information, we can substitute the values into the formula:
a8 = a1 + (8 - 1) * d
Since a4 is the fourth term, we can find a1 by subtracting 3 times the common difference from a4:
a1 = a4 - 3d
Substituting the values, we get:
a1 = 4 - 3 * (-3) = 4 + 9 = 13
Now we can calculate a8:
a8 = 13 + (8 - 1) * (-3) = 13 + 7 * (-3) = 13 - 21 = -8
Therefore, the eighth term (a8) of the arithmetic progression is -8.
Calculating a9
To find the ninth term (a9), we can use the same formula:
a9 = a1 + (9 - 1) * d
Substituting the values, we get:
a9 = 13 + (9 - 1) * (-3) = 13 + 8 * (-3) = 13 - 24 = -11
Therefore, the ninth term (a9) of the arithmetic progression is -11.
Calculating a23
To find the twenty-third term (a23), we can again use the formula:
a23 = a1 + (23 - 1) * d
Substituting the values, we get:
a23 = 13 + (23 - 1) * (-3) = 13 + 22 * (-3) = 13 - 66 = -53
Therefore, the twenty-third term (a23) of the arithmetic progression is -53.
Calculating a11
To find the eleventh term (a11), we can use the formula:
a11 = a1 + (11 - 1) * d
Substituting the values, we get:
a11 = 13 + (11 - 1) * (-3) = 13 + 10 * (-3) = 13 - 30 = -17
Therefore, the eleventh term (a11) of the arithmetic progression is -17.
Calculating a15
To find the fifteenth term (a15), we can use the formula:
a15 = a1 + (15 - 1) * d
Substituting the values, we get:
a15 = 13 + (15 - 1) * (-3) = 13 + 14 * (-3) = 13 - 42 = -29
Therefore, the fifteenth term (a15) of the arithmetic progression is -29.
Calculating a27
To find the twenty-seventh term (a27), we can use the formula:
a27 = a1 + (27 - 1) * d
Substituting the values, we get:
a27 = 13 + (27 - 1) * (-3) = 13 + 26 * (-3) = 13 - 78 = -65
Therefore, the twenty-seventh term (a27) of the arithmetic progression is -65.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili