
Log6 (x+4)+log6 (x-1)=1


Ответы на вопрос




To solve the equation , you can use the properties of logarithms. First, you can combine the two logarithms into one using the properties of logarithms:
Now, you can rewrite this equation in exponential form to solve for (x:
Now, simplify the equation:
Expand the right side of the equation:
Now, bring all terms to one side of the equation to set it equal to zero:
Simplify further:
Now, you have a quadratic equation. You can solve it by factoring or by using the quadratic formula. In this case, it's easier to factor:
Now, set each factor equal to zero:
Solve for in each equation:
For the first equation, , you get:
For the second equation, , you get:
So, there are two possible solutions:
and
You should check each solution in the original equation to make sure they are valid. Logarithms are only defined for positive values, so make sure that both and are greater than 0 for each solution. In this case, both -5 and 2 are valid solutions.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili