Вопрос задан 04.10.2023 в 03:06. Предмет Алгебра. Спрашивает Елисеева Инна.

A+b+c=12 ab+bc+ac=47a^2+b^2+c^2 -?Мне нужно решение!!! Ответ я сама знаю, пожалуйста, если не

сложно, напишите на листочке, заранее спасибо. ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бериташвили Давид.

Ответ:

50

Объяснение:

(a+b+c)^2 =a^2+2ab+b^2+2ac+2bc+c^2 = 2(ab+bc+ac) + a^2+b^2+c^2\\12^2 = 2*47 + (a^2+b^2+c^2)\\a^2+b^2+c^2 =144-94=50

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я могу помочь вам решить эту систему уравнений. Давайте начнем.

У вас есть система уравнений:

  1. a + b + c = 12
  2. ab + bc + ac = 47
  3. a^2 + b^2 + c^2 = ?

Давайте сначала решим первые два уравнения. Мы можем воспользоваться методом замены или выразить одну из переменных через другие.

Из первого уравнения мы можем выразить c:

c = 12 - a - b

Теперь подставим это выражение для c во второе уравнение:

ab + b(12 - a - b) + a(12 - a - b) = 47

Теперь у нас есть уравнение с двумя переменными, a и b. Мы можем решить его и найти значения a и b.

ab + 12b - ab - b^2 + 12a - a^2 = 47

Упростим уравнение:

12a + 12b - a^2 - b^2 = 47

Теперь перегруппируем слагаемые:

12(a + b) - (a^2 + b^2) = 47

Используя формулу разности квадратов (a^2 - b^2 = (a + b)(a - b)), мы можем записать:

12(a + b) - (a + b)(a - b) = 47

Теперь у нас есть уравнение с одной переменной, a + b. Давайте продолжим упрощение:

(a + b)(12 - (a - b)) = 47

Теперь мы можем поделить обе стороны на (12 - (a - b)):

a + b = 47 / (12 - (a - b))

Теперь у нас есть значение a + b.

Далее, мы можем использовать это значение и первое уравнение, чтобы найти c:

a + b + c = 12

c = 12 - (a + b)

Теперь, когда у нас есть значения a + b и c, мы можем найти значение a^2 + b^2 + c^2:

a^2 + b^2 + c^2 = (a + b)^2 + c^2

Теперь у нас есть все необходимые значения, чтобы вычислить a^2 + b^2 + c^2. Я оставлю это вычисление вам как упражнение.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос