
(2x-2,5)^2 (3х-13)^3 <0;


Ответы на вопрос

Ответ:
Объяснение:
(2x-2,5)^2 (3х-13)^3 <0;
(2x-2,5)^2>0 всегда полажител; значить
(3х-13)^3 <0; и (3х-13) <0; 3х<13; x<13/3;
x∈(-∞; 13/3)



To solve the inequality , you can follow these steps:
Find the critical points where the expression equals zero by setting each factor inside the parentheses equal to zero and solving for :
and .
Solve each equation separately:
For :
For :
So, the critical points are and .
Now, you need to determine the sign of each factor in the inequality in the intervals created by the critical points.
Let's examine three intervals: , , and .
a) For :
- is positive because it's the square of a real number.
- is also positive because it's the cube of a real number.
Therefore, the product is positive in this interval.
b) For :
- is positive.
- is negative because is negative in this interval, and cubing a negative number results in a negative value.
Therefore, the product is negative in this interval.
c) For :
- is positive.
- is also positive.
Therefore, the product is positive in this interval.
To summarize the results:
- The inequality is satisfied in the interval .
So, the solution to the inequality is:
In this range of values for , the inequality is true.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili