
Cosx+cos2x=2..............


Ответы на вопрос

()()()()()()()()………..




To solve the equation cos(x) + cos(2x) = 2, you can follow these steps:
Start by applying the double-angle identity for cosine: cos(2x) = 2cos^2(x) - 1.
Substitute this expression into the original equation: cos(x) + (2cos^2(x) - 1) = 2.
Rearrange the equation to collect like terms: 2cos^2(x) + cos(x) - 3 = 0.
Now, you have a quadratic equation in terms of cos(x). To solve it, you can factor or use the quadratic formula. Let's use the quadratic formula: cos(x) = [-b ± √(b^2 - 4ac)] / (2a),
where a = 2, b = 1, and c = -3.
Plug in these values into the formula: cos(x) = [-1 ± √(1^2 - 4(2)(-3))] / (2 * 2),
cos(x) = [-1 ± √(1 + 24)] / 4,
cos(x) = [-1 ± √25] / 4.
Simplify the expression further: cos(x) = [-1 ± 5] / 4.
Now, you have two possibilities: a) cos(x) = (5 - 1) / 4 = 4/4 = 1. b) cos(x) = (-1 - 5) / 4 = -6/4 = -3/2.
Since the cosine function's range is between -1 and 1, option b) is not possible, so you have: cos(x) = 1.
To find the solutions for x, take the arccosine (inverse cosine) of both sides: x = arccos(1).
The arccos(1) is equal to 0, so you have: x = 0.
So, the solution to the equation cos(x) + cos(2x) = 2 is x = 0.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili