
Sin(a-b)=√10/10, ctg a=1/2, tgb?


Ответы на вопрос

#####################




Let's solve for the tangent (tg) of angle b, given that sin(a - b) = √10/10 and cotangent (ctg) of angle a is 1/2.
First, we need to find the values of sin(a) and cos(a) since we have sin(a - b) and ctg(a):
ctg(a) = 1/2 This means that tan(a) = 2.
We know that tan(a) = sin(a) / cos(a).
We can use the Pythagorean identity for sine and cosine: sin²(a) + cos²(a) = 1.
Now, let's find sin(a) and cos(a) using the information we have:
From ctg(a) = 1/2, we know that tan(a) = 2, which means sin(a)/cos(a) = 2.
Now, we square both sides of the equation sin(a)/cos(a) = 2:
(sin(a)/cos(a))² = 2² (sin(a)/cos(a))² = 4
Now, we use the Pythagorean identity:
sin²(a) + cos²(a) = 1
Let's express sin(a) in terms of cos(a) using the equation sin(a)/cos(a) = 2:
sin(a) = 2cos(a)
Now we can substitute sin(a) in the Pythagorean identity:
(2cos(a))² + cos²(a) = 1
4cos²(a) + cos²(a) = 1
Now, combine like terms:
5cos²(a) = 1
Now, isolate cos²(a):
cos²(a) = 1/5
Taking the square root of both sides:
cos(a) = ±√(1/5)
Now, let's determine the sign of cos(a). Since ctg(a) is positive (1/2), angle a must be in the first quadrant of the unit circle, where both sine and cosine are positive. Therefore, cos(a) is positive:
cos(a) = √(1/5)
Now that we have found sin(a) and cos(a), we can find sin(b) using the formula sin(a - b) = √10/10:
sin(a - b) = √(1/5) - sin(b) = √10/10
Now, solve for sin(b):
sin(b) = √(1/5) - √10/10
sin(b) = (√2/√10) - (√10/√10)
sin(b) = (√2 - √10)/√10
Now, we can find tangent (tg) of angle b:
tg(b) = sin(b)/cos(b)
tg(b) = [(√2 - √10)/√10] / (√(1/5))
tg(b) = [(√2 - √10)/√10] * (√5)
tg(b) = [(√2 - √10)*√5] / 10
So, tg(b) = [(√10√5 - √50)/10]


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili