Вопрос задан 19.07.2018 в 14:08. Предмет Алгебра. Спрашивает Михайлов Артём.

Постройте график функции y=6/x .Какова область определения функции? При каких значениях х функция

принимает отрицательные значения?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пожидаева Кира.

Нельзя допустить деление на нуль, следовательно x≠0. Отсюда область определения:
\displaystyle D(y)=(-\infty,0)\cup(0,+\infty)

График y= \frac{6}{x} получается с помощью растягивания графика y= \frac{1}{x} (обратная пропорциональность) вдоль оси у в 6 раз. Это означает, что у данной функции, многие свойства такие же как и у обратной пропорциональности.
Мы знаем что график обратной пропорциональности называется гиперболой. Следовательно,  график y= \frac{6}{x} тоже является гиперболой.

Область значений:
E(y)=(-\infty ;0)\cup (0;+\infty )

Так как функция y= \frac{1}{x} принимает отрицательные значения на луче  (-\infty,0) то и y= \frac{6}{x}   принимает отрицательные значения на луче  (-\infty,0)

Функция нечётна, так как:
f(-x)=-f(x)\\ \frac{6}{-x}=- \frac{6}{x}

Таблица первых значений и сам график во вложении.




0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос