
|x+4|=a^2+4 При каких значениях параметра уравнение имеет два корня?


Ответы на вопрос

(принадлежит от минус бесконечность до плюс бесконечность)



To find the values of the parameter 'a' for which the equation |x + 4| = a^2 + 4 has two real roots, we need to analyze the possibilities for the expression |x + 4|.
The absolute value function |x| is defined as follows:
- For x >= 0, |x| = x.
- For x < 0, |x| = -x.
Now let's apply this definition to our equation |x + 4| = a^2 + 4:
- If (x + 4) >= 0, then |x + 4| = x + 4.
- If (x + 4) < 0, then |x + 4| = -(x + 4) = -x - 4.
So we have two possibilities for the equation:
- If (x + 4) >= 0, the equation becomes: x + 4 = a^2 + 4
- If (x + 4) < 0, the equation becomes: -x - 4 = a^2 + 4
Now, let's solve each of these equations separately to find the values of 'a' that give us two real roots:
x + 4 = a^2 + 4 Subtract 4 from both sides: x = a^2 Now, for this equation to have real roots, 'a^2' must be greater than or equal to 0 (since any real number squared is non-negative).
-x - 4 = a^2 + 4 Add 4 to both sides: -x = a^2 + 8 Multiply by -1 (this is allowed because we know 'a^2 + 8' is positive): x = -(a^2 + 8) Again, for this equation to have real roots, 'a^2 + 8' must be greater than or equal to 0.
In summary, for the equation |x + 4| = a^2 + 4 to have two real roots, both 'a^2' and 'a^2 + 8' must be greater than or equal to 0.
So, the range of 'a' that satisfies this condition is: a^2 >= 0 and a^2 + 8 >= 0
a^2 >= 0 is true for all real values of 'a', because squares of real numbers are non-negative.
a^2 + 8 >= 0 can be rewritten as a^2 >= -8, which is again true for all real values of 'a'.
Therefore, the equation |x + 4| = a^2 + 4 has two real roots for all real values of 'a'.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili