Вопрос задан 28.07.2023 в 17:21. Предмет Алгебра. Спрашивает Симонова Аня.

Периметр прямоугольника равен 76 см, а площадь равна 240 кв. см. Найдите стороны прямоугольника.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Асипенко Елена.

Пусть одна сторона прямоугольника 15х, тогда другая 4х.

Формула периметра P=2(a+b)

Подставляем 2(15х + 4х)= 76

Решаем 30х + 8х = 76

              38х = 76

              х = 2

Значит одна сторона 15*2=30 см, другая 4*2= 8 см

Площадь равна 30см * 8 см=240 см(в квадрате)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть стороны прямоугольника будут обозначены как a и b (где a - длина, b - ширина).

Известно, что периметр прямоугольника равен 76 см:

Периметр = 2 * (a + b) = 76

Также, площадь прямоугольника равна 240 квадратных сантиметров:

Площадь = a * b = 240

Теперь у нас есть система из двух уравнений с двумя неизвестными a и b. Давайте решим эту систему:

  1. Перепишем первое уравнение относительно одной из переменных, например, b: 2 * (a + b) = 76 a + b = 76 / 2 a + b = 38 b = 38 - a

  2. Теперь заменим b во втором уравнении: a * b = 240 a * (38 - a) = 240 38a - a^2 = 240 a^2 - 38a + 240 = 0

  3. Теперь решим квадратное уравнение:

Мы можем попробовать разложить его на множители: (a - 12)(a - 26) = 0

Таким образом, получаем два возможных значения a: a = 12 и a = 26.

  1. Теперь найдем соответствующие значения b, используя уравнение b = 38 - a:
  • Для a = 12: b = 38 - 12 = 26

  • Для a = 26: b = 38 - 26 = 12

Таким образом, у нас есть две пары сторон для прямоугольника:

  1. a = 12 см, b = 26 см
  2. a = 26 см, b = 12 см

Обе пары сторон удовлетворяют условиям задачи: периметр равен 76 см, а площадь равна 240 кв. см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос