To prove the trigonometric identity:
sina−cosasin2a+1−tan2asina+cosa=sina+cosa
We'll start with the left-hand side (LHS) and manipulate it step by step to reach the right-hand side (RHS).
Step 1: Factor out common terms.
sina−cosasin2a+1−tan2asina+cosa
Step 2: Write tan2a in terms of sina and cosa.
tan2a=cos2asin2a
Step 3: Rewrite the denominator cos2a as (1−sin2a).
tan2a=1−sin2asin2a
Step 4: Substitute the rewritten tan2a into the second fraction.
sina−cosasin2a+1−1−sin2asin2asina+cosa
Step 5: Simplify the second fraction's denominator.
sina−cosasin2a+1−cos2asin2asina+cosa
Step 6: Rewrite cos2a as (1−sin2a).
sina−cosasin2a+1−1−sin2asin2asina+cosa
Step 7: Find a common denominator for the fractions in the expression.
The common denominator is (sina−cosa)(1−sin2a).
Step 8: Write each fraction with the common denominator.
(sina−cosa)(1−sin2a)sin2a(1−sin2a)+(sina−cosa)(1−sin2a)(sina+cosa)(sina−cosa)
Step 9: Combine the fractions.
(sina−cosa)(1−sin2a)sin2a(1−sin2a)+(sina+cosa)(sina−cosa)
Step 10: Simplify the numerator.
(sina−c
0
0