
4^1+log(x+y)=12 log1/3(x+y)+log1/3(x-y)=-1


Ответы на вопрос

4^(1+log4(x+y))=12,
log1/3(x+y)+log1/3(x-y)=-1
4^(1+log4(x+y))=4·4^log4(x+y)=12=4·3
4·4^log4(x+y)=4·3
разделим обе части на 4
4^log4(x+y)=3
(х+у) ^log4(4)=3
после упрощения получили простое уравнение:
х+у=3
log1/3(x+y)+log1/3(x-y)=-1= log 1/3 (3)
получаем:
(х+у) (х-у) =3
подставим сюда (х+у) =3
3(х-у) =3
х-у=3/3=1
получили второе уравнение системы
х-у=1
Получили систему
х+у=3
х-у=1
2х=4; х=2; у=3-х; у=1
Ответ: х=2; у=1



To solve the system of equations, let's start with the first equation:
Simplify the left side:
Now, subtract 4 from both sides:
Now, rewrite the equation in exponential form:
Next, let's move on to the second equation:
Combine the logarithms using the product rule:
Now, rewrite the equation in exponential form:
Now, we have a system of equations:
Let's solve this system. We can use substitution or elimination methods. Let's use substitution:
From equation 1, we can express as .
Now, substitute this value of into equation 2:
Now, isolate :
Now, substitute the value of back into the expression for :