
2log2 (x-2)+log 0,5 (x-3)>2


Ответы на вопрос

Решение см на листочке.




To solve the inequality 2log2(x-2) + log0.5(x-3) > 2, we need to use logarithmic properties to simplify the expression and then find the solution for x.
Logarithmic properties:
- log_a(b) + log_a(c) = log_a(b * c)
- log_a(b^n) = n * log_a(b)
Using these properties, we can simplify the given inequality:
2log2(x-2) + log0.5(x-3) > 2
Apply property 1 to combine the logarithms:
log2((x-2)^2) + log0.5(x-3) > 2
Apply property 2 to the first logarithm:
log2((x-2)^2) = 2 * log2(x-2)
Now the inequality becomes:
2 * log2(x-2) + log0.5(x-3) > 2
Now, convert the logarithms to the same base:
log0.5(x-3) = log2((x-3)^(-1))
The inequality becomes:
2 * log2(x-2) + log2((x-3)^(-1)) > 2
Combine the logarithms using property 1:
log2((x-2)^2) + log2((x-3)^(-1)) > 2
Now apply another property to combine the logarithms:
log2((x-2)^2 * (x-3)^(-1)) > 2
Now, remove the logarithm using the definition of logarithms:
(x-2)^2 * (x-3)^(-1) > 2^2
Simplify the right-hand side:
(x-2)^2 * (x-3)^(-1) > 4
Now, multiply both sides by (x-3) to get rid of the denominator:
(x-2)^2 > 4(x-3)
Expand the left side:
x^2 - 4x + 4 > 4x - 12
Move all terms to one side of the inequality:
x^2 - 8x + 16 > 0
Now we need to find the critical points of the inequality, where the expression equals zero:
x^2 - 8x + 16 = 0
Using the quadratic formula:
x = (8 ± √(8^2 - 4 * 1 * 16)) / 2
x = (8 ± √(64 - 64)) / 2
x = (8 ± √0) / 2
x = 8 / 2
x = 4
Now, we have the critical point x = 4. We can now analyze the inequality in different intervals:
- x < 4
- x = 4
- x > 4
Test the intervals using a test point in each one:
- Choose x = 3 (a number less than 4):
(x-2)^2 > 4(x-3) (3-2)^2 > 4(3-3) 1 > 0 (True)
- Choose x = 4 (the critical point):
(x-2)^2 > 4(x-3) (4-2)^2 > 4(4-3) 4 > 4 (False)
- Choose x = 5 (a number greater than 4):
(x-2)^2 > 4(x-3) (5-2)^2 > 4(5-3) 9 > 8 (True)
The inequality is true for x < 4 and x > 4. However, since x = 4 is not included in the solution (due to the strict inequality sign), the final solution is:
x < 4 or x > 4


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili