
X^2-3x-18<0 + график


Ответы на вопрос

Ответ:
напирмер должен быть так




To graph the quadratic inequality x^2 - 3x - 18 < 0, we can start by finding the x-intercepts and the vertex of the corresponding quadratic equation x^2 - 3x - 18 = 0.
First, let's find the x-intercepts by setting the equation equal to zero:
x^2 - 3x - 18 = 0
To factorize the quadratic equation, we need to find two numbers whose product is -18 and whose sum is -3. These numbers are -6 and 3:
(x - 6)(x + 3) = 0
Now, we can set each factor equal to zero and solve for x:
x - 6 = 0 -> x = 6 x + 3 = 0 -> x = -3
So, the x-intercepts are x = 6 and x = -3.
Next, let's find the vertex of the parabola. The x-coordinate of the vertex can be found using the formula:
x = -b / (2a)
In this case, a = 1 and b = -3, so:
x = -(-3) / (2 * 1) = 3 / 2 = 1.5
To find the y-coordinate of the vertex, we substitute x = 1.5 into the quadratic equation:
y = (1.5)^2 - 3(1.5) - 18 = 2.25 - 4.5 - 18 = -20.25
Therefore, the vertex is (1.5, -20.25).
Now, we can plot these points on a graph and determine the region where the quadratic inequality x^2 - 3x - 18 < 0 is true.
Here's a rough sketch of the graph:
yaml |
| x
| x
| x
| x
-----+-------------------
| x x
| x
| x
|
|
The x-intercepts are located at x = 6 and x = -3, and the vertex is at (1.5, -20.25). The parabola opens upward since the coefficient of x^2 is positive.
To determine the region where x^2 - 3x - 18 < 0 is true, we look for the values of x that fall below the x-axis (i.e., the region between the x-intercepts). In this case, it is the region between x = -3 and x = 6, excluding the endpoints.
Therefore, the solution to the quadratic inequality is -3 < x < 6.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili