
В геометрической прогрессии cn=16, q=0,2 и Sn=2496. Найдите n.


Ответы на вопрос

Согласно формуле суммы геометрической прогрессии
Также сумму геометрической прогрессии можно вычислить так:
Ответ: n = 4



Для решения данной задачи, нам нужно использовать формулы для суммы первых n членов геометрической прогрессии и для n-го члена.
Формула для суммы первых n членов геометрической прогрессии: Sn = c1 * (1 - q^n) / (1 - q),
где Sn - сумма первых n членов, c1 - первый член прогрессии, q - знаменатель прогрессии.
Формула для n-го члена геометрической прогрессии: cn = c1 * q^(n-1),
где cn - n-й член прогрессии, c1 - первый член прогрессии, q - знаменатель прогрессии.
Из условия задачи у нас есть следующие значения: c1 = 16, q = 0.2, Sn = 2496.
Нам нужно найти n. Подставим известные значения в формулу для суммы первых n членов: 2496 = 16 * (1 - 0.2^n) / (1 - 0.2).
Упростим уравнение:
2496 = 16 * (1 - 0.2^n) / 0.8.
Теперь избавимся от дроби:
2496 * 0.8 = 16 * (1 - 0.2^n).
1996.8 = 16 - 3.2^n.
3.2^n = 16 - 1996.8.
3.2^n = -1980.8.
Теперь возведем обе части уравнения в логарифмическую степень, чтобы избавиться от основания 3.2:
n * log(3.2) = log(-1980.8).
n = log(-1980.8) / log(3.2).
К сожалению, логарифм отрицательного числа не определен в обычной математике, поэтому данная геометрическая прогрессия не имеет смысла. Пожалуйста, проверьте условие задачи или убедитесь, что предоставленные данные верны.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili