
3^x>1/27 2^x<1/8 (2/5)^x+2 >(2/5)^-1


Ответы на вопрос

ОТВЕТ ВО ВЛОЖЕНИИИИИИИ




To solve the inequalities, let's work on each one separately:
- 3^x > 1/27:
To solve this inequality, we need to find the range of values for x that satisfy the inequality. We can start by expressing both sides with the same base:
1/27 = (1/3)^3
So, the inequality becomes:
3^x > (1/3)^3
Now, we can compare the exponents:
x > 3
Thus, the solution to the first inequality is x > 3.
- 2^x < 1/8:
Again, let's express both sides with the same base:
1/8 = (1/2)^3
The inequality becomes:
2^x < (1/2)^3
Now, we can compare the exponents:
x < 3
Thus, the solution to the second inequality is x < 3.
- (2/5)^x + 2 > (2/5)^-1:
First, simplify the right-hand side:
(2/5)^-1 = 5/2
Now, we have the inequality:
(2/5)^x + 2 > 5/2
Subtract 2 from both sides:
(2/5)^x > 5/2 - 2
(2/5)^x > 5/2 - 4/2
(2/5)^x > 1/2
To solve for x, we can take the logarithm (base 2/5) of both sides:
x > log_(2/5)(1/2)
Using the property of logarithms, we can rewrite this as:
x > log(1/2) / log(2/5)
Now, calculate the value:
x > -0.4307...
Thus, the solution to the third inequality is x > -0.4307.
In summary, the solutions to the inequalities are:
- x > 3
- x < 3
- x > -0.4307


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili