Вопрос задан 12.07.2018 в 05:15. Предмет Алгебра. Спрашивает Еделькина Екатерина.

Помогите пожалуйста!!!Ученик должен был перемножить два трехзначных числа и разделить их

произведения на пятизначное. Однако он не заметил знака умножения и принял два записанных рядом трехзначных числа за одно шестизначное. Поэтому полученное частное (натуральное) оказалось в три раза больше истинного. Найдите все три числа.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Максакова Екатерина.

Обозначим эти числа за a, b и c.
 Имеем (1000a+b)/c=3*(ab/с) а значит 1000a+b=3ab
Так как правая часть полученного равенства делится на a, значит , левая часть тоже делится на a, т.е. b = k*a, где k - натуральное число .
Получаем 1000а+ка=3ка*а
1000+к=3ка
Обратим внимание, что k не превосходит 9, так как a и b — трехзначные числа, а 1000+к делится на 3.
Значит, возможны только варианты к=2, к=5, к=8
Если к=2 , то а=167, b=334 , а c=27889 или c=55778 (других пятизначных делителей у ab нет).
Если k = 5, то a = 67, что противоречит условию.
Если k = 8, то a = 42, что противоречит условию.
Ответ: эти числа 167, 334 и 27889 или 167, 334 и 55778. 

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос