
X^2-3x+4>0 и x^2-16<0


Ответы на вопрос




To solve the inequalities and , let's break them down one by one:
- :
To solve this quadratic inequality, we can factor the quadratic expression or use the quadratic formula to find the roots. However, since the inequality asks for where the expression is greater than 0, we can find the critical points and test intervals.
Let's find the roots of the equation :
The roots are given by the quadratic formula: , where the coefficients are , , and .
Since the discriminant () is negative, the quadratic has no real roots. This means the quadratic expression is either entirely positive or entirely negative.
To determine the intervals where , we can use the fact that the coefficient of is positive, indicating that the parabola opens upwards.
However, since there are no real roots, the expression does not change sign. So, it is either always positive or always negative. In this case, is always positive ().
- :
Let's solve this quadratic inequality in a similar manner:
can be factored as , which gives us two real roots: and .
Now, let's test the intervals created by these roots:
- When , both factors and are negative, so the whole expression is positive. Not in the solution.
- When , is negative, but is positive, making the expression negative. This interval is in the solution.
- When , both factors are positive, so the expression is positive. Not in the solution.
Therefore, the solution to is .
To summarize:
- For , the solution is all real values of (the expression is always positive).
- For , the solution is .


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili