Вопрос задан 05.07.2023 в 10:28. Предмет Алгебра. Спрашивает Мирошниченко Руслана.

Из пункта А в пункт В, расстояние между которыми 20 км, одновременно выехали автомобилисти

велосипедист. Известно, что скорость автомобилиста на 90 км/ч больше, чем скорость велосипедиста. Определите скорость (в км/ч) велосипедиста, если известно, что он прибыл в пункт В на 1 часов 48 минуты позже, чем автомобилист
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Нигметзянов Самат.

Ответ:

10 (км/час) - скорость велосипедиста.

Объяснение:

Из пункта А в пункт В, расстояние между которыми 20 км, одновременно выехали автомобилист и велосипедист. Известно, что скорость автомобилиста на 90 км/ч больше, чем скорость велосипедиста. Определите скорость (в км/ч) велосипедиста, если известно, что он прибыл в пункт В на 1 часов 48 минуты позже, чем автомобилист?

Формула движения: S=v*t

S - расстояние            v - скорость             t – время

х - скорость велосипедиста.

х+90 - скорость автомобилиста.

20/х - время велосипедиста.

20/(х+90) - время автомобилиста.

Разница во времени 1 час 48 минут=1 и 4/5 часа=9/5 часа, уравнение:

20/х - 20/(х+90)=9/5

Общий знаменатель 5х(х+90), надписываем над числителями дополнительные множители, избавляемся от дроби:

20*5(х+90) - 20*5х=9*х(х+90)

100х+9000-100х=9х²+810х

-9х²-810х+9000=0/-1

9х²+810х-9000=0

Разделить уравнение на 9 для упрощения:

х²+90х-1000=0, квадратное уравнение, ищем корни:

D=b²-4ac =8100+4000=12100         √D= 110

х₁=(-b-√D)/2a

х₁=(-90-110)/2= -200/2= -100, отбрасываем, как отрицательный.                  

х₂=(-b+√D)/2a

х₂=(-90+110)/2

х₂=20/2

х₂=10 (км/час) - скорость велосипедиста.

10+90=100 (км/час) - скорость автомобилиста.

Проверка:

20/10=2 (часа) - время велосипедиста.

20/100=0,2 (часа)=12 минут -  время автомобилиста.

Разница: 2(часа)-12(минут)=1(час)48(минут), верно.  

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть vv - скорость велосипедиста в км/ч, а v+90v + 90 - скорость автомобилиста в км/ч.

Расстояние можно выразить через скорость и время: расстояние=скорость×времярасстояние = скорость \times время.

Время, которое потребуется велосипедисту, чтобы пройти 20 км, будет t=20vt = \frac{20}{v} часов.

Время, которое потребуется автомобилисту, чтобы пройти 20 км, будет t13t - \frac{1}{3} часов (потому что 1 час 48 минут = 1 + 48/60 = 1.8 часов).

Таким образом, у нас есть уравнение:

20v+90=20v13\frac{20}{v + 90} = \frac{20}{v} - \frac{1}{3}.

Давайте решим это уравнение:

20v+90=20v13\frac{20}{v + 90} = \frac{20}{v} - \frac{1}{3}.

Умножим обе стороны уравнения на 3v(v+90)3v(v + 90) для избавления от знаменателей:

60v=60v(v+90)v(v+90)60v = 60v(v + 90) - v(v + 90).

Раскроем скобки:

60v=60v2+5400vv290v60v = 60v^2 + 5400v - v^2 - 90v.

Упростим:

60v=59v2+5310v60v = 59v^2 + 5310v.

Переносим все на одну сторону:

59v230v5310=059v^2 - 30v - 5310 = 0.

Теперь это квадратное уравнение, которое можно решить с использованием квадратного корня или других методов. Найденные значения vv будут скоростями велосипедиста.

После решения уравнения и получения значений vv, выберите то значение, которое является разумным положительным числом в контексте задачи.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос