
X2+bx-32=0 x1=8 x2=? b=?


Ответы на вопрос

х² + вх - 32 = 0
х1 * х2 = -32
8 * х2 = -32
х2= - 4
х1 + х2= - в
8 + (-4) = - в
в= - 4
х² - 4х - 32 = 0
ответ: х2= - 4; в = - 4.



To find the values of x2 and b in the quadratic equation x^2 + bx - 32 = 0, given that x1 = 8, we can use the quadratic formula.
The quadratic formula states that for a quadratic equation of the form ax^2 + bx + c = 0, the solutions for x are given by:
x = (-b ± sqrt(b^2 - 4ac)) / (2a)
Comparing this with our equation x^2 + bx - 32 = 0, we can see that a = 1, b = b, and c = -32.
Given that one of the solutions is x1 = 8, we can substitute these values into the quadratic formula to solve for b:
8 = (-b ± sqrt(b^2 - 4(1)(-32))) / (2(1))
Simplifying the equation:
8 = (-b ± sqrt(b^2 + 128)) / 2
Multiplying both sides by 2 to eliminate the denominator:
16 = -b ± sqrt(b^2 + 128)
Squaring both sides to eliminate the square root:
256 = b^2 + 128
Rearranging the equation:
b^2 = 256 - 128 b^2 = 128 b = ±√128
Therefore, the possible values for b are b = √128 and b = -√128.
To find the value of x2, we can substitute the value of b into the quadratic formula:
x2 = (-b ± sqrt(b^2 - 4ac)) / (2a)
Substituting the values a = 1, b = √128, and c = -32:
x2 = (-√128 ± sqrt((√128)^2 - 4(1)(-32))) / (2(1))
Simplifying the equation:
x2 = (-√128 ± sqrt(128 - 128)) / 2
x2 = (-√128 ± sqrt(0)) / 2
x2 = (-√128 ± 0) / 2
x2 = -√128 / 2 or x2 = √128 / 2
Simplifying further:
x2 = -8√2 or x2 = 8√2
Therefore, the values of x2 are x2 = -8√2 and x2 = 8√2, and the possible values of b are b = √128 and b = -√128.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili