
(2x+3)(4x-3)(x-10) >0


Ответы на вопрос

жауабы ане тұр суретте






To solve the inequality , we need to determine the intervals where the expression is greater than zero. We can do this by analyzing the signs of the factors and finding where the expression is positive.
Let's break down the problem step by step:
Identify the critical points by setting each factor equal to zero and solving for :
- gives
- gives
- gives
Now, we have three critical points: , , and . We'll use these points to divide the number line into four intervals:
- Interval 1:
- Interval 2:
- Interval 3:
- Interval 4:
Now, let's analyze the sign of the expression within each interval by testing a point within each interval:
For Interval 1 (), let's test :
- , which is positive.
For Interval 2 (), let's test :
- , which is positive.
For Interval 3 (), let's test :
- , which is negative.
For Interval 4 (), let's test :
- , which is positive.
Based on the analysis above, we see that the expression is positive in Intervals 1 and 2, and it's negative in Interval 3. In Interval 4, the expression is positive again. Therefore, the solution to the inequality is:
Please note that the endpoints of the intervals are not included in the solution because the inequality is strict ().


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili