
Sinx - siny = 0.5 cosx + cosy = √(3)/2


Ответы на вопрос

Ответ:
(π/2 + 2πm; π/6 + 2πn)
(-π/6 + 2πm; -π/2 + 2πn); n,m∈Z
Объяснение:Применяем к 1-му уравнение "разность синусов", а ко 2-му "сумму косинусов":
(1)
(2)
Делим почленно (1) на (2):
(3)
(x - y)/2 = π/6 + πk, k∈Z
x = y + π/3 + 2πk - Подставляем в (1):
2·sin(0.5·(y + π/3 + 2πk - y)·cos(0.5·(y + π/3 + 2πk + y)) = 1/2
2·sin(π/6)·cos(y + π/6) = 1/2
cos(y + π/6) = 1/2
y + π/6 = ±π/3 + 2πn, n∈Z
1) y = -π/2 + 2πn
x = -π/6 + 2πn + 2πk = -π/6 + 2πm, m∈Z
или
2) y = π/6 + 2πn
x = π/2 + 2πn + 2πk = π/2 + 2πm
Проверяем получившиеся корни - все подходят



To solve the equations sin(x) - sin(y) = 0.5 and cos(x) + cos(y) = √(3)/2, we can use trigonometric identities and algebraic manipulation.
Let's start with the first equation: sin(x) - sin(y) = 0.5.
Using the trigonometric identity for the difference of two sines, we have:
2 sin((x-y)/2) cos((x+y)/2) = 0.5.
Dividing both sides by 2, we get:
sin((x-y)/2) cos((x+y)/2) = 0.25.
Now, let's move on to the second equation: cos(x) + cos(y) = √(3)/2.
Using the trigonometric identity for the sum of two cosines, we have:
2 cos((x+y)/2) cos((x-y)/2) = √(3)/2.
Dividing both sides by 2, we get:
cos((x+y)/2) cos((x-y)/2) = √(3)/4.
Now, we have two equations:
- sin((x-y)/2) cos((x+y)/2) = 0.25,
- cos((x+y)/2) cos((x-y)/2) = √(3)/4.
Let's solve this system of equations.
Dividing the first equation by the second equation, we have:
(sin((x-y)/2) cos((x+y)/2)) / (cos((x+y)/2) cos((x-y)/2)) = (0.25) / (√(3)/4).
Simplifying the right side, we get:
(4 * sin((x-y)/2) cos((x+y)/2)) / (√(3) * cos((x+y)/2) cos((x-y)/2)) = 1 / √(3).
Canceling out the common terms, we have:
(4 * sin((x-y)/2)) / (√(3) * cos((x-y)/2)) = 1 / √(3).
Now, let's solve this equation for (x-y)/2:
4 * sin((x-y)/2) = (√(3) * cos((x-y)/2)).
Dividing both sides by cos((x-y)/2), we get:
4 * tan((x-y)/2) = √(3).
Taking the inverse tangent (arctan) of both sides, we have:
(x-y)/2 = arctan(√(3)/4).
Multiplying both sides by 2, we get:
x - y = 2 * arctan(√(3)/4).
Now, we have an equation relating x and y.
To find specific values for x and y, we would need additional information or constraints in the problem. Without any further information, we cannot determine unique values for x and y.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili