Вопрос задан 28.06.2023 в 15:29. Предмет Алгебра. Спрашивает Казора Ангелина.

Упростить выражение 1+Sin^2a+cos^2 a

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Межуев Данил.

Ответ:

Упростим выражение 1 - sin (2 * a) - cos (2 * a).  

Для того, чтобы упростить выражение, используем следующие формулы тригонометрии:  

sin^2 x + cos^2 x = 1;  

cos (2 * x) = cos^2 x - sin^2 x;  

sin (2 * x) = 2 * sin x * cos x.  

Тогда получаем:  

1 - sin (2 * a) - cos (2 * a) = sin^2 a + cos^2 a - (2 * sin a * cos a) - (cos^2 a - sin^2 a) = sin^2 a + cos^2 a - 2 * sin a * cos a - cos^2 a + sin^2 a;  

Сгруппируем подобные значения.  

(sin^2 a + sin^2 a) + (cos^2 a + cos^2 a) - 2 * sin a * cos a = 2 * sin^2 a - 2 * sin a * cos a = 2 * sin a * (sin a - cos a).

Объяснение:

0 0
Отвечает Нурмагамедов Рамиль.

1 +  \sin ^{2} a +  \cos^{2}a = 2

 \sin^{2}a +  \cos^{2}a = 1

Ответ:2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Выражение 1 + sin^2(a) + cos^2(a) можно упростить, используя тригонометрическое тождество, которое гласит, что sin^2(a) + cos^2(a) = 1. Поэтому:

1 + sin^2(a) + cos^2(a) = 1 + 1 = 2

Таким образом, упрощенное выражение равно 2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос