
X²-7x-30<0x²-4x+6<0


Ответы на вопрос

Объяснение:
Решение на фотографии




To solve the inequalities and , you can follow these steps:
- Solve each inequality separately by finding the roots (where the expressions equal zero) and determining the sign of the expression in each interval created by these roots.
Let's start with :
Factor the quadratic expression:
Now, find the critical points by setting each factor equal to zero:
gives gives
These critical points divide the number line into three intervals: , , and .
Now, test a point within each interval to determine the sign of the expression:
For , pick : , which simplifies to , meaning the expression is positive in this interval.
For , pick : , which simplifies to , meaning the expression is negative in this interval.
For , pick : , which simplifies to , meaning the expression is negative in this interval.
So, the solution to is .
Now, let's solve :
To solve this quadratic inequality, you can use the quadratic formula to find its roots:
In this case, , , and :
Since the discriminant () is negative, this quadratic has complex roots, and the expression is always positive. Therefore, there are no real solutions to .
In summary:
- has a solution: .
- has no real solutions.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili