
|x| =7; |x| =-7; |x+7|=0


Ответы на вопрос

1) |x| = 7
x₁ = 7 x₂ = - 7
2) |x| = - 7
решений нет
3) |x + 7| = 0
x + 7 = 0
x = - 7



Объяснение:
вот это ответь 100%Правильно




Let's solve each of these absolute value equations one by one:
- |x| = 7: To solve this equation, you can consider two cases:
Case 1: x is positive. In this case, |x| is equal to x, so you have: x = 7
Case 2: x is negative. In this case, |x| is equal to -x, so you have: -x = 7
Now, solve for x in the second case: -x = 7 x = -7
So, there are two solutions for |x| = 7: x = 7 and x = -7.
|x| = -7: This equation has no real solutions. The absolute value of any real number is always non-negative, so it cannot be equal to a negative number like -7. Therefore, there are no real solutions for |x| = -7.
|x + 7| = 0: To solve this equation, realize that the absolute value of any real number is never negative, and the only real number whose absolute value is 0 is 0 itself. Therefore: x + 7 = 0
Now, solve for x: x = -7
So, the only solution for |x + 7| = 0 is x = -7.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili