Вопрос задан 26.06.2023 в 15:47. Предмет Алгебра. Спрашивает Лонгольф Костя.

1.cos(4x - π/3) = 1 2.tg(2x - π/6) = -1 3.2cos²x + 3cosx - 2 = 0 4.cos²x - √3 cosx sinx = 0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Климентьева Полина.

Ответ:

1.

 \cos(4x -  \frac{\pi}{3} )  = 1 \\ 4x -  \frac{\pi}{3}  = 2\pi \: n \\ 4x =  \frac{\pi}{3}  + 2\pi \: n \\ x =  \frac{\pi}{12}  +  \frac{\pi \: n}{2}

n принадлежит Z.

2.

tg(2x -  \frac{\pi}{6} ) =  - 1 \\ 2x -  \frac{\pi}{6}  =  -  \frac{\pi}{4}  + \pi \: n \\ 2x =  \frac{\pi}{6}  -  \frac{\pi}{4} +  \pi \: n \\ 2x =  -  \frac{\pi}{12}  + \pi \: n \\ x =  -  \frac{\pi}{24}  +  \frac{\pi \: n}{2}

n принадлежит Z.

3.

2 { \cos }^{2} x + 3 \cos(x)  - 2 = 0 \\  \\  \cos(x) =  t \\  \\ 2 {t}^{2} + 3 t - 2 = 0 \\ D = 9 + 16 = 25 \\ t1 =  \frac{ - 3 + 5}{4} =  \frac{1}{2}  \\  t2 =  - 2 \\  \\  \cos(x)  =  \frac{1}{2}  \\ x =  +  -  \frac{\pi}{3}  + 2\pi \: n \\  \\  \cos(x)  =  - 2

корней нет

Ответ:

x =  +  -  \frac{\pi}{3}  + 2\pi \: n \\

4.

 { \cos }^{2} x -  \sqrt{3}  \cos(x)  \sin(x)  = 0 \\  \cos(x) ( \cos(x)  -  \sqrt{3}  \sin(x) ) = 0 \\  \\  \cos(x)  = 0 \\ x1 =  \frac{\pi}{2}  + \pi \: n \\  \\  \cos(x)  -  \sqrt{3}  \sin(x)  = 0

разделим на cosx, не равный 0.

1 -  \sqrt{3} tgx = 0 \\  \sqrt{3} tgx = 1 \\ tgx =  \frac{1}{ \sqrt{3} }  =  \frac{ \sqrt{3} }{3}  \\ x2 =  \frac{\pi}{6}  + \pi \: n

n принадлежит Z.

0 0
Отвечает Машукова Полина.

Ответ:

Объяснение:

1) cos(4x - π/3) = 1

4x - π/3 = 2πn

4x = π/3 + 2πn

x = π/12 + πn/2

2) tg(2x - π/6) = -1

2x - π/6 = -π/4 + πn

2x = (4π-6π)/24 + πn

2x = -π/12 + πn

x = -π/24 + πn/2

3) 2cos²x + 3cosx - 2 = 0

cosx = t; |t|<=1

2t² + 3t - 2 = 0

D = 9 +16

D = 25

t 1,2 = (-3+-5)/4

t = -1/2 и t = -2 (не подходит по условию)

cosx = -1/2

x = +-2π/3 + 2πn

4) cos²x - √3 cosx sinx = 0

cosx*(cosx-√3sinx) = 0

cosx = 0

x = π/2+πn

cosx-√3sinx = 0 | :sinx

ctgx - √3 = 0

ctgx = √3

x = π/6+πk

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve these trigonometric equations, we'll go through each one step by step.

  1. cos(4x - π/3) = 1

To solve this equation, recall that the cosine function has a maximum value of 1. So, for the equation to be true, we need the angle inside the cosine function to be such that cos(angle) = 1.

4x - π/3 = 2πn, where n is an integer.

Now, solve for x:

4x = 2πn + π/3

x = (2πn + π/3)/4

  1. tan(2x - π/6) = -1

To solve this equation, recall that the tangent function is negative in the second and fourth quadrants and has a value of -1 at π/4 radians.

2x - π/6 = π/4 + πn, where n is an integer.

Now, solve for x:

2x = π/4 + πn + π/6

x = (π/4 + πn + π/6)/2

  1. 2cos²x + 3cosx - 2 = 0

This is a quadratic equation in terms of cos(x). You can solve it by factoring:

2cos²x + 3cosx - 2 = 0

(2cosx - 1)(cosx + 2) = 0

Now, set each factor equal to zero:

2cosx - 1 = 0

cosx = 1/2

cosx + 2 = 0

cosx = -2

However, the cosine function only takes values between -1 and 1, so cosx = -2 has no real solutions.

For cosx = 1/2:

x = π/3 + 2πn or x = 5π/3 + 2πn, where n is an integer.

  1. cos²x - √3cosxsinx = 0

You can use a trigonometric identity here. Recall the identity: sin(2x) = 2sin(x)cos(x).

Rewrite the equation using this identity:

cos²x - √3sin(2x) = 0

Now, factor out cos(x):

cos(x)(cos(x) - √3sin(2x)) = 0

Now, you have two cases:

  1. cos(x) = 0

x = π/2 + πn, where n is an integer.

  1. cos(x) - √3sin(2x) = 0

This case is a bit more involved. Use the identity sin(2x) = 2sin(x)cos(x):

cos(x) - √3(2sin(x)cos(x)) = 0

cos(x) - 2√3sin(x)cos(x) = 0

Now, factor out the common factor of cos(x):

cos(x)(1 - 2√3sin(x)) = 0

Now, you have two cases:

a) cos(x) = 0 (already covered in the first case).

b) 1 - 2√3sin(x) = 0

1 = 2√3sin(x)

sin(x) = 1/(2√3)

x = π/6 + 2πn or x = 5π/6 + 2πn, where n is an integer.

These are the solutions to the given trigonometric equations.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос