
1.cos(4x - π/3) = 1 2.tg(2x - π/6) = -1 3.2cos²x + 3cosx - 2 = 0 4.cos²x - √3 cosx sinx = 0


Ответы на вопрос

Ответ:
1.
n принадлежит Z.
2.
n принадлежит Z.
3.
корней нет
Ответ:
4.
разделим на cosx, не равный 0.
n принадлежит Z.



Ответ:
Объяснение:
1) cos(4x - π/3) = 1
4x - π/3 = 2πn
4x = π/3 + 2πn
x = π/12 + πn/2
2) tg(2x - π/6) = -1
2x - π/6 = -π/4 + πn
2x = (4π-6π)/24 + πn
2x = -π/12 + πn
x = -π/24 + πn/2
3) 2cos²x + 3cosx - 2 = 0
cosx = t; |t|<=1
2t² + 3t - 2 = 0
D = 9 +16
D = 25
t 1,2 = (-3+-5)/4
t = -1/2 и t = -2 (не подходит по условию)
cosx = -1/2
x = +-2π/3 + 2πn
4) cos²x - √3 cosx sinx = 0
cosx*(cosx-√3sinx) = 0
cosx = 0
x = π/2+πn
cosx-√3sinx = 0 | :sinx
ctgx - √3 = 0
ctgx = √3
x = π/6+πk



To solve these trigonometric equations, we'll go through each one step by step.
- cos(4x - π/3) = 1
To solve this equation, recall that the cosine function has a maximum value of 1. So, for the equation to be true, we need the angle inside the cosine function to be such that cos(angle) = 1.
4x - π/3 = 2πn, where n is an integer.
Now, solve for x:
4x = 2πn + π/3
x = (2πn + π/3)/4
- tan(2x - π/6) = -1
To solve this equation, recall that the tangent function is negative in the second and fourth quadrants and has a value of -1 at π/4 radians.
2x - π/6 = π/4 + πn, where n is an integer.
Now, solve for x:
2x = π/4 + πn + π/6
x = (π/4 + πn + π/6)/2
- 2cos²x + 3cosx - 2 = 0
This is a quadratic equation in terms of cos(x). You can solve it by factoring:
2cos²x + 3cosx - 2 = 0
(2cosx - 1)(cosx + 2) = 0
Now, set each factor equal to zero:
2cosx - 1 = 0
cosx = 1/2
cosx + 2 = 0
cosx = -2
However, the cosine function only takes values between -1 and 1, so cosx = -2 has no real solutions.
For cosx = 1/2:
x = π/3 + 2πn or x = 5π/3 + 2πn, where n is an integer.
- cos²x - √3cosxsinx = 0
You can use a trigonometric identity here. Recall the identity: sin(2x) = 2sin(x)cos(x).
Rewrite the equation using this identity:
cos²x - √3sin(2x) = 0
Now, factor out cos(x):
cos(x)(cos(x) - √3sin(2x)) = 0
Now, you have two cases:
- cos(x) = 0
x = π/2 + πn, where n is an integer.
- cos(x) - √3sin(2x) = 0
This case is a bit more involved. Use the identity sin(2x) = 2sin(x)cos(x):
cos(x) - √3(2sin(x)cos(x)) = 0
cos(x) - 2√3sin(x)cos(x) = 0
Now, factor out the common factor of cos(x):
cos(x)(1 - 2√3sin(x)) = 0
Now, you have two cases:
a) cos(x) = 0 (already covered in the first case).
b) 1 - 2√3sin(x) = 0
1 = 2√3sin(x)
sin(x) = 1/(2√3)
x = π/6 + 2πn or x = 5π/6 + 2πn, where n is an integer.
These are the solutions to the given trigonometric equations.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili