
Y"+3y'+2y=0 н.у y(0)=-1 y'(0)=3


Ответы на вопрос

Ответ:
y = C₁ e^(-2x) + C₂ e^(-x)
y(0) = C₁ + C₂, C₁ + C₂ = - 1, C₁ = - 1 - C₂
y` = - 2*C₁e^(-2x) - C₂e^(-x) , y`(0) = 3
- 2*C₁ - C₂ = 3,
- 2*(-1 - C₂) - C₂ = 3
2 + 2C₂ - C₂ = 3
C₂ = 1
C₁ = - 1 - 1 = - 2
y = e^(-2x) - 2e^(-x)
y = 1/(e^2x) - 2/(e^x)
надеюсь так...



The given differential equation is a second-order linear homogeneous differential equation with constant coefficients:
Y'' + 3Y' + 2Y = 0
To solve this differential equation, we can first find the characteristic equation, which is obtained by replacing Y'' with r^2, Y' with r, and Y with 1 in the equation:
r^2 + 3r + 2 = 0
Now, we solve this quadratic equation for r. We can factor it:
(r + 2)(r + 1) = 0
This equation has two solutions: r = -2 and r = -1.
Since the roots of the characteristic equation are distinct and real, the general solution for the homogeneous differential equation can be written as:
Y(t) = C1 * e^(-2t) + C2 * e^(-t)
Now, we can apply the initial conditions to find the values of the constants C1 and C2:
Initial condition: y(0) = -1 We have: -1 = C1 * e^(-2 * 0) + C2 * e^(-1 * 0) -1 = C1 + C2
Initial condition: y'(0) = 3 We need to find the derivative of Y(t) and then evaluate it at t = 0: Y'(t) = -2C1 * e^(-2t) - C2 * e^(-t) Y'(0) = -2C1 * e^(-2 * 0) - C2 * e^(-1 * 0) = -2C1 - C2
Now, we have a system of two equations:
- -1 = C1 + C2
- 3 = -2C1 - C2
You can solve this system of equations to find the values of C1 and C2. Here's how you can do it:
From the first equation, we can express C1 in terms of C2:
C1 = -1 - C2
Now, substitute this expression for C1 into the second equation:
3 = -2(-1 - C2) - C2
Simplify and solve for C2:
3 = 2 + 2C2 - C2 3 = 2 + C2
C2 = 3 - 2 C2 = 1
Now that you have the value of C2, you can find C1 using the first equation:
C1 = -1 - C2 C1 = -1 - 1 C1 = -2
So, the values of the constants are C1 = -2 and C2 = 1. Therefore, the particular solution to the initial value problem is:
Y(t) = -2 * e^(-2t) + e^(-t)


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili