Вопрос задан 03.07.2018 в 19:59. Предмет Алгебра. Спрашивает Оклей Владислав.

Найдите основной период функции y=7sin(x/6-pi/8)+SQRT(3)*cos(x/2+pi/7)-3tg(x/3+pi/5)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ступин Артём.

Нужно найти период каждой из присутствующих тригонометрических функций. Слагаемые -π/8; +π/7; +π/5 влияют только на смещение по оси x, на период они не оказывают никакого влияния. Множители, стоящие перед тригонометрическими функциями (7;√3;3)
также не влияют на период. На период влияют только:
1) x/6-увеличивает период в 6 раз
2) x/2-увеличивает период в 2 раза
3) x/3-увеличивает период в 3 раза
Зная периодичность функций y=sinx(период равен 2π), y=cos(период равен 2π), y=tgx(период равен π) можно найти периоды этих функций с данными аргументами:
T1=12π
T2=4π
T3=3π

Общим основным периодом функции будет НОК всех периодов.
T=НОК(T1,T2,T3)=12π

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос