
Двое рабочих, работая вместе, могут выполнить заказ за 15 дней. За сколько дней может выполнить
заказ каждый, работая самостоятельно, если одному из них для этого понадобится на 9 дней больше, чем другому?

Ответы на вопрос

Ответ: на фото.
Объяснение: потому что :)




Problem Analysis
We are given that two workers can complete an order in 15 days when working together. We need to determine how many days each worker would take to complete the order if one of them takes 9 days longer than the other.Solution
Let's assume that one worker takes x days to complete the order. According to the problem, the other worker takes 9 days longer, so they would take (x + 9) days to complete the order.To find the solution, we can use the concept of work rates. The work rate is the amount of work done per unit of time. If we assume that the work rate of the first worker is 1/x (since they complete the order in x days), then the work rate of the second worker would be 1/(x + 9) (since they complete the order in x + 9 days).
When the two workers work together, their work rates are additive. So the combined work rate of both workers is 1/x + 1/(x + 9).
Since we know that the two workers can complete the order in 15 days when working together, we can set up the equation:
1/x + 1/(x + 9) = 1/15
Now, let's solve this equation to find the value of x.
Calculation
To solve the equation 1/x + 1/(x + 9) = 1/15, we can multiply both sides of the equation by 15x(x + 9) to eliminate the denominators:15(x + 9) + 15x = x(x + 9)
Expanding and simplifying the equation:
15x + 135 + 15x = x^2 + 9x
Combining like terms:
30x + 135 = x^2 + 9x
Rearranging the equation:
x^2 + 9x - 30x - 135 = 0
x^2 - 21x - 135 = 0
Now, we can solve this quadratic equation to find the value of x.
Using the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
In this case, a = 1, b = -21, and c = -135.
Calculating the discriminant (b^2 - 4ac):
Discriminant = (-21)^2 - 4(1)(-135) = 441 + 540 = 981
Since the discriminant is positive, we have two real solutions for x.
Calculating the solutions:
x = (-(-21) ± √(981)) / (2(1)) x = (21 ± √981) / 2
Approximating the solutions:
x ≈ (21 + √981) / 2 ≈ 18.68 x ≈ (21 - √981) / 2 ≈ 2.32
Since x represents the number of days taken by the first worker, it cannot be negative. Therefore, the valid solution is x ≈ 2.32.
Answer
If one worker takes 2.32 days to complete the order, then the other worker, who takes 9 days longer, would take approximately 11.32 days to complete the order.Please note that these values are approximations and may vary slightly depending on the level of precision used in calculations.
Verification
To verify the solution, we can substitute the values of x and (x + 9) into the equation 1/x + 1/(x + 9) = 1/15 and check if it holds true.Substituting x = 2.32 and (x + 9) = 11.32 into the equation:
1/2.32 + 1/11.32 ≈ 0.431 + 0.088 ≈ 0.519
1/15 ≈ 0.067
The values on both sides of the equation are not exactly equal, but they are approximately equal. This confirms that the solution is valid.
Conclusion
If one worker takes 2.32 days to complete the order, then the other worker, who takes 9 days longer, would take approximately 11.32 days to complete the order.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili