Вопрос задан 16.06.2023 в 16:38. Предмет Алгебра. Спрашивает Майер Светлана.

Знайти похідну функції у= cos(5х+4)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Згурский Макс.

Ответ:

y=cos(5x+4)\ \ ,\qquad \boxed{\ (cosu)'=-sinu\cdot u'\ }\\\\y'=-sin(5x+4)\cdot (5x+4)'=-5sin(5x+4)

0 0
Отвечает Горборуков Никита.

Ответ: -5sin(5х+4)

Объяснение:

у= cos(5х+4)

(cosu)'=(-sinu)*u'

у'= (cos(5х+4))'=-(sin(5х+4))*(5х+4)'=-5sin(5х+4)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для знаходження похідної функції у = cos(5x + 4) скористаємося правилом диференціювання складеної функції.

Спочатку знайдемо похідну виразу 5x + 4: (5x + 4)' = 5

Тепер застосуємо правило ланцюгового диференціювання до функції cos(u), де u = 5x + 4: (cos(u))' = -sin(u) * u'

Отже, похідна функції у = cos(5x + 4) дорівнює: - sin(5x + 4) * 5

Отже, похідна функції у = cos(5x + 4) дорівнює -5sin(5x + 4).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос