
У геометричній прогресії b2*b8=1024 q=2 Знайти b5


Ответы на вопрос

Ответ:
автор нажми лучший ответ пж
Объяснение:




Для розв'язання цього завдання нам знадобиться формула для елементів геометричної прогресії:
bₙ = b₁ * q^(n-1),
де bₙ - n-ий член прогресії, b₁ - перший член прогресії, q - співвідношення прогресії, n - номер члена прогресії.
За умовою завдання, ми знаємо, що b₂ * b₈ = 1024 і q = 2.
Запишемо це у вигляді рівняння:
b₂ * b₈ = b₁ * q^(2-1) * b₁ * q^(8-1) = b₁² * q^7 = 1024.
Так як q = 2, то рівняння стає:
b₁² * 2^7 = 1024.
Далі розв'язуємо це рівняння щодо b₁:
b₁² * 128 = 1024, b₁² = 1024 / 128, b₁² = 8, b₁ = √8, b₁ = ±√(2^3), b₁ = ±2√2.
Таким чином, перший член прогресії b₁ може мати значення ±2√2.
Тепер, для знаходження b₅, підставимо значення b₁ і q у формулу для елементів геометричної прогресії:
b₅ = b₁ * q^(5-1) = (±2√2) * 2^(5-1) = (±2√2) * 2^4 = (±2√2) * 16 = ±32√2.
Отже, b₅ може мати значення ±32√2.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili