
2(х+3у)+9=х+6 3(х-2у)=х+30


Ответы на вопрос

Ответ:
4x5y
Объяснение:
все довольно простенько



To solve the given system of equations, let's simplify and solve each equation step by step.
Equation 1: 2(x + 3y) + 9 = x + 6
Expand the equation: 2x + 6y + 9 = x + 6
Move all the x terms to one side and the constant terms to the other side: 2x - x + 6y = 6 - 9 x + 6y = -3
Equation 2: 3(x - 2y) = x + 30
Expand the equation: 3x - 6y = x + 30
Move all the x terms to one side and the constant terms to the other side: 3x - x - 6y = 30 2x - 6y = 30
Now we have a system of two equations:
- x + 6y = -3
- 2x - 6y = 30
We can solve this system by using the method of elimination. Let's multiply equation 1 by 2 to cancel out the y term: 2(x + 6y) = 2(-3) 2x + 12y = -6
Now we can add this equation to equation 2: (2x - 6y) + (2x + 12y) = 30 + (-6) 4x + 6y = 24
Next, divide this equation by 2 to simplify: (4x + 6y)/4 = 24/4 x + (6y)/4 = 6 x + (3/2)y = 6
Now we have a new equation: 3) x + (3/2)y = 6
Let's solve equations 3 and 1 simultaneously using the substitution method. Solve equation 3 for x: x = 6 - (3/2)y
Substitute this value of x into equation 1: 6 - (3/2)y + 6y = -3 Multiply the equation by 2 to eliminate the fraction: 12 - 3y + 12y = -6 Combine like terms: 12 + 9y = -6 9y = -6 - 12 9y = -18 y = -18/9 y = -2
Substitute the value of y back into equation 3 to find x: x + (3/2)(-2) = 6 x - 3 = 6 x = 6 + 3 x = 9
Therefore, the solution to the given system of equations is x = 9 and y = -2.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili