
((x + y)xy = 6 lxy + x + y = 5


Ответы на вопрос





To solve the given system of equations:
Equation 1: (x + y)xy = 6 Equation 2: lxy + x + y = 5
Let's rearrange Equation 1 and simplify it:
(x + y)xy = 6 x^2y + xy^2 = 6
Now, let's solve Equation 2 for l:
lxy + x + y = 5 lxy = 5 - x - y
Substitute the expression for lxy in Equation 1:
x^2y + xy^2 = 6 (5 - x - y)xy = 6
Expand the expression:
5xy - x^2y - xy^2 = 6
Rearrange the equation to a quadratic form:
x^2y + xy^2 - 5xy + 6 = 0
This is a quadratic equation in terms of xy. To solve it, we can factorize it:
(xy - 2)(xy - 3) = 0
Setting each factor to zero gives us two cases:
Case 1: xy - 2 = 0 xy = 2
Case 2: xy - 3 = 0 xy = 3
Now, we can solve for x and y separately using these values of xy.
For Case 1: xy = 2
Substituting xy = 2 into Equation 2:
l(2) + x + y = 5 2l + x + y = 5
We don't have enough information to find exact values for x and y in this case.
For Case 2: xy = 3
Substituting xy = 3 into Equation 2:
l(3) + x + y = 5 3l + x + y = 5
Similarly, we don't have enough information to find exact values for x and y in this case either.
Therefore, based on the given information, we cannot determine the exact values of x and y that satisfy both equations simultaneously.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili