Вопрос задан 07.06.2023 в 19:29. Предмет Алгебра. Спрашивает Вагабова Ольга.

2) (3x-1)²+(4x + 2)² = (5x-1) (5x+1)​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Поликарпов Вадим.

Відповідь:

Пояснення:

Розв'язуємо рівняння:

(3x-1)² + (4x + 2)² = (5x-1) (5x+1)

Розкриваємо дужки:

9x² - 6x + 1 + 16x² + 16x + 4 = 25x² - 1

Скорочуємо подібні доданки:

25x² - 25x² + 9x² + 16x² - 6x + 16x + 1 + 4 + 1 = 0

Прибираємо зайві доданки:

50x² + 10 = 0

Ділимо обидві частини рівняння на 10:

5x² + 1 = 0

Віднімаємо 1 з обох сторін:

5x² = -1

Ділимо обидві частини на 5:

x² = -1/5

Отже, розв'язків цього рівняння немає, оскільки квадрат будь-якого числа є додатнім або нулем, тоді як права частина рівняння є від'ємним числом.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the equation (3x-1)² + (4x + 2)² = (5x-1)(5x+1), we can expand and simplify both sides of the equation.

Expanding the left side: (3x-1)² + (4x + 2)² = (3x-1)(3x-1) + (4x + 2)(4x + 2) = 9x² - 6x + 1 + 16x² + 16x + 4 = 25x² + 10x + 5

Expanding the right side: (5x-1)(5x+1) = 25x² - 1

Now, equating the left and right sides of the equation, we have: 25x² + 10x + 5 = 25x² - 1

Subtracting 25x² from both sides: 10x + 5 = -1

Subtracting 5 from both sides: 10x = -6

Dividing by 10: x = -6/10

Simplifying the fraction: x = -3/5

Therefore, the solution to the equation (3x-1)² + (4x + 2)² = (5x-1)(5x+1) is x = -3/5.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос