
Вопрос задан 22.06.2018 в 22:17.
Предмет Алгебра.
Спрашивает Васильева Яна.
Помогите решить!!!!! Докажите, что произведение двух последовательных четных чисел кратно 8


Ответы на вопрос

Отвечает Волощук Оля.
Возьмём чётное число 2n и следующее за ним чётное число 2n+2. Найдем произведение этих чисел: 2n*(2n+2). Теперь данное число разделим на 8:
2n(2n+2)
8
Предположим, что n - чётное число, т.е. 2р. Тогда:
2*2р(2*2р+2) = 4р(4р+2) = 4р*2(2р+1) = 8р(2р+1) = 2р²+р
8 8 8 8
Предположим, что n - нечётное число, т.е. 2р+1. Тогда:
2(2р+1)(2(2р+1)+2) = 2(2р+1)2((2р+1)+1) = 4(2р+1)(2р+2) =
8 8 8
= 4(2р+1)2(р+1) = 8(2р+1)(р+1) = (2р+1)(р+1)
8 8
Что и требовалось доказать.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili