
Вопрос задан 22.06.2018 в 11:21.
Предмет Алгебра.
Спрашивает Руденко Виктория.
3 cos x - sin 2 x = 0 решить тригонометрическое уравнение


Ответы на вопрос

Отвечает Гусев Илья.
Решение: 3 cos x - sin 2 x = 0, разложим синус по формуле двойного аргумента
3*cos x- 2*sin x*cos x=0, разложим левую часть на множители
cosx *(3-2sin x)=0, произведение равно 0, если хотя бы один из множителей равен 0, поэтому
cos x=0
x=pi\2+pi*k, где к –целое, или
3-2sin x=0, то есть
sin x=3\2>1, что невозможно, так область значений функции синус лежит от -1 включительно до 1 включительно
Ответ: pi\2+pi*k, где к –целое


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili