
Arcsin(sin7)=arcsin(cos8)=arccos(cos12)=


Ответы на вопрос

Ответ:
Объяснение:
!!!!!!!!!!!!!!!!!!!!!!






To find the values of the given expressions, we need to understand the trigonometric functions and their inverse functions.
- Arcsin(sin(7)): The arcsin function returns the angle whose sine is the given value. However, it is important to note that the arcsin function only returns values between -π/2 and π/2 (i.e., -90 degrees and 90 degrees).
In this case, sin(7) is a specific value. Since we don't have the exact value of sin(7), we can't determine the exact value of arcsin(sin(7)). We need to use a calculator or mathematical software to find the numerical approximation.
Arcsin(cos(8)): Similar to the previous case, we need the exact value of cos(8) to find the value of arcsin(cos(8)). Without the exact value of cos(8), we can't determine the value precisely.
Arccos(cos(12)): The arccos function returns the angle whose cosine is the given value. Like arcsin, the arccos function also returns values within a specific range, which is 0 to π (i.e., 0 degrees to 180 degrees).
In this case, cos(12) is a specific value. Again, without the exact value of cos(12), we can't determine the value of arccos(cos(12)) precisely.
In summary, without the exact values of sin(7), cos(8), and cos(12), we cannot calculate the exact values of arcsin(sin(7)), arcsin(cos(8)), and arccos(cos(12)).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili