
Помогите, пожалуйста 1) (2-x)(8-x)<0 2) (1-x)(7-x)>0 3) (x-2)(5+x)>0


Ответы на вопрос

x²-10x+16=0
D= b²-4ac = 100-64= 36
x1= -b-√D
-------- = 10-6
2a. ------ = 2
2
x2= -b+√D
-------- = 10+6
2a. ------ = 8
2
+ - +
——•——•———›
2 8
(-∞;2)€(8;∞)
2) 7-x-7x+x²>0
x²-8x+7=0
D=b²-4ac= 64-28=36
x1= -b-√D = 8-6 =1
-------- -----
2a. 2
x2= -b+√D
-------- = 8+6
2a. ------ = 7
2
+. - +
———•——•——›
1 7
(-∞;1)€(7;∞)
3)5x+x²-10-2x>0
x²+3x-10=0
D=b²-4ac= 9+40=49
x1= -b-√D
-------- = -3-7
2a. ------ = -5
2
x2= -b+√D
-------- = -3+7
2a. ------ = 2
2
+ - +
———•————•———›
-5 2
(-∞;-5)€(2;∞)



To solve the inequality (2-x)(8-x) < 0, we can use the method of signs. First, we find the critical values of x by setting each factor equal to zero:
2 - x = 0 => x = 2 8 - x = 0 => x = 8
Now we have three intervals to consider: (-∞, 2), (2, 8), and (8, ∞). We pick a test point from each interval and check the sign of the expression (2-x)(8-x):
- If x < 2, then we can pick x = 0 as our test point. Plugging this into the expression, we get (2-0)(8-0) = 16, which is positive.
- If 2 < x < 8, then we can pick x = 5 as our test point. Plugging this into the expression, we get (2-5)(8-5) = -9, which is negative.
- If x > 8, then we can pick x = 10 as our test point. Plugging this into the expression, we get (2-10)(8-10) = 16, which is positive.
From this, we can see that the expression (2-x)(8-x) is negative on the interval (2, 8), since it is negative at x = 5. Therefore, the solution to the inequality is:
2 < x < 8
To solve the inequality (1-x)(7-x) > 0, we can again use the method of signs. Finding the critical values of x by setting each factor equal to zero:
1 - x = 0 => x = 1 7 - x = 0 => x = 7
Now we have three intervals to consider: (-∞, 1), (1, 7), and (7, ∞). We pick a test point from each interval and check the sign of the expression (1-x)(7-x):
- If x < 1, then we can pick x = 0 as our test point. Plugging this into the expression, we get (1-0)(7-0) = 7, which is positive.
- If 1 < x < 7, then we can pick x = 5 as our test point. Plugging this into the expression, we get (1-5)(7-5) = -8, which is negative.
- If x > 7, then we can pick x = 8 as our test point. Plugging this into the expression, we get (1-8)(7-8) = 7, which is positive.
From this, we can see that the expression (1-x)(7-x) is positive on the intervals (-∞, 1) and (7, ∞), since it is positive at x = 0 and x = 8. Therefore, the solution to the inequality is:
x < 1 or x > 7
To solve the inequality (x-2)(5+x) > 0, we once again use the method of signs. Finding the critical values of x by setting each factor equal to zero:
x - 2 = 0 => x = 2 5 + x = 0 => x = -5
Now we have three intervals to consider: (-∞, -5), (-5, 2), and (2, ∞). We pick a test point from each interval and check the sign of the expression (x-2)(5+x):


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili