4sin(3x)sinx-2cos(2x)+1=0
Ответы на вопрос
        Воспользовалась формулой:
            We can start by applying some trigonometric identities to simplify the equation.
First, we can use the double angle identity for cosine:
cos(2x) = 2cos^2(x) - 1
We can also use the product-to-sum identity for sine:
2sin(A)sin(B) = cos(A-B) - cos(A+B)
Using these identities, we can rewrite the equation as:
4sin(3x)sinx - 2(2cos^2(x) - 1) + 1 = 0
Simplifying further:
4sin(3x)sinx - 4cos^2(x) + 3 = 0
Now, we can use the double angle identity for sine:
sin(2x) = 2sin(x)cos(x)
sin(3x) = 3sin(x) - 4sin^3(x)
Substituting these identities into the equation:
4(3sin(x) - 4sin^3(x))(sin(x)) - 4cos^2(x) + 3 = 0
Simplifying:
12sin^2(x) - 16sin^4(x) - 4cos^2(x) + 3 = 0
Using the Pythagorean identity:
sin^2(x) + cos^2(x) = 1
cos^2(x) = 1 - sin^2(x)
Substituting into the equation:
12sin^2(x) - 16sin^4(x) - 4(1 - sin^2(x)) + 3 = 0
Expanding and simplifying:
-16sin^4(x) + 12sin^2(x) - 1 = 0
Now, we can substitute y = sin^2(x) and rewrite the equation in terms of y:
-16y^2 + 12y - 1 = 0
We can solve for y using the quadratic formula:
y = [ -b ± sqrt(b^2 - 4ac) ] / 2a
where a = -16, b = 12, and c = -1.
Plugging in the values:
y = [ -12 ± sqrt(12^2 - 4(-16)(-1)) ] / 2(-16) y = [ -3 ± sqrt(5) ] / 4
Since y = sin^2(x), we need to take the square root of y to find sin(x):
sin(x) = ± sqrt([ -3 ± sqrt(5) ] / 4)
Therefore, the solutions are:
sin(x) = sqrt([ -3 + sqrt(5) ] / 4), sin(x) = -sqrt([ -3 + sqrt(5) ] / 4), sin(x) = sqrt([ -3 - sqrt(5) ] / 4), and sin(x) = -sqrt([ -3 - sqrt(5) ] / 4)
Note that some of these solutions may not be valid, depending on the range of values that x is supposed to take.
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			