
4sin(3x)sinx-2cos(2x)+1=0


Ответы на вопрос

Воспользовалась формулой:



We can start by applying some trigonometric identities to simplify the equation.
First, we can use the double angle identity for cosine:
cos(2x) = 2cos^2(x) - 1
We can also use the product-to-sum identity for sine:
2sin(A)sin(B) = cos(A-B) - cos(A+B)
Using these identities, we can rewrite the equation as:
4sin(3x)sinx - 2(2cos^2(x) - 1) + 1 = 0
Simplifying further:
4sin(3x)sinx - 4cos^2(x) + 3 = 0
Now, we can use the double angle identity for sine:
sin(2x) = 2sin(x)cos(x)
sin(3x) = 3sin(x) - 4sin^3(x)
Substituting these identities into the equation:
4(3sin(x) - 4sin^3(x))(sin(x)) - 4cos^2(x) + 3 = 0
Simplifying:
12sin^2(x) - 16sin^4(x) - 4cos^2(x) + 3 = 0
Using the Pythagorean identity:
sin^2(x) + cos^2(x) = 1
cos^2(x) = 1 - sin^2(x)
Substituting into the equation:
12sin^2(x) - 16sin^4(x) - 4(1 - sin^2(x)) + 3 = 0
Expanding and simplifying:
-16sin^4(x) + 12sin^2(x) - 1 = 0
Now, we can substitute y = sin^2(x) and rewrite the equation in terms of y:
-16y^2 + 12y - 1 = 0
We can solve for y using the quadratic formula:
y = [ -b ± sqrt(b^2 - 4ac) ] / 2a
where a = -16, b = 12, and c = -1.
Plugging in the values:
y = [ -12 ± sqrt(12^2 - 4(-16)(-1)) ] / 2(-16) y = [ -3 ± sqrt(5) ] / 4
Since y = sin^2(x), we need to take the square root of y to find sin(x):
sin(x) = ± sqrt([ -3 ± sqrt(5) ] / 4)
Therefore, the solutions are:
sin(x) = sqrt([ -3 + sqrt(5) ] / 4), sin(x) = -sqrt([ -3 + sqrt(5) ] / 4), sin(x) = sqrt([ -3 - sqrt(5) ] / 4), and sin(x) = -sqrt([ -3 - sqrt(5) ] / 4)
Note that some of these solutions may not be valid, depending on the range of values that x is supposed to take.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili